手写汉字笔迹识别模型汇总

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
手写汉字笔迹识别模型:
第一名用的是googleNet,准确率97.3%
def GoogleLeNetSlim(x, num_classes, keep_prob=0.5):
    with tf.variable_scope('main'):
        t = slim.conv2d(x, 64, [3, 3], [1, 1], padding='SAME', activation_fn=relu, normalizer_fn=slim.batch_norm, scope='conv1')
        t = slim.max_pool2d(t, [2, 2], [2, 2], padding='SAME')
        t = slim.conv2d(t, 96, [3, 3], [1, 1], padding='SAME', activation_fn=relu, normalizer_fn=slim.batch_norm, scope='conv2')
        t = slim.conv2d(t, 192, [3, 3], [1, 1], padding='SAME', activation_fn=relu, normalizer_fn=slim.batch_norm, scope='conv3')
        t = slim.max_pool2d(t, [2, 2], [2, 2], padding='SAME')
 
    with tf.variable_scope('block1'):
        t = block_slim(t, [64, 96, 128, 16, 32, 32], name='block1')       # [?, 16, 16, 256]
 
    with tf.variable_scope('block2'):
        t = block_slim(t, [128, 128, 192, 32, 96, 64], name='block1')     # [?, 16, 16, 480]
        t = tf.nn.max_pool(t, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
 
    with tf.variable_scope('block3'):
        t = block_slim(t, [192, 96, 208, 16, 48, 64], name='block1')
        t = block_slim(t, [160, 112, 224, 24, 64, 64], name='block2')
        t = block_slim(t, [128, 128, 256, 24, 64, 64], name='block3')
        t = block_slim(t, [112, 144, 288, 32, 64, 64], name='block4')
        t = block_slim(t, [256, 160, 320, 32, 128, 128], name='block5')    # [?, 8, 8, 832]
        t = tf.nn.max_pool(t, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
 
    with tf.variable_scope('block4'):
        t = block_slim(t, [256, 160, 320, 32, 128, 128], name='block1')
        t = block_slim(t, [384, 192, 384, 48, 128, 128], name='block2')    # [?, 8, 8, 1024]
        t = tf.nn.max_pool(t, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
 
    with tf.variable_scope('fc'):
        t = slim.flatten(t)
        t = slim.fully_connected(slim.dropout(t, keep_prob), 1024, activation_fn=relu, normalizer_fn=slim.batch_norm, scope='fc1')
        t = slim.fully_connected(slim.dropout(t, keep_prob), num_classes, activation_fn=None, scope='logits')
 
    return t
TODO:实验下,https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py
 
 
还有使用inception v3的!!!
def build_graph_all(top_k,scope=None):
    keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')
    images = tf.placeholder(dtype=tf.float32, shape=[None, image_size, image_size, 1], name='image_batch')
    labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')
 
    with tf.variable_scope(scope,'Incept_Net',[images]):
        with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],stride=1,padding='VALID'):
 
            net = slim.conv2d(images,32,[3,3],scope='conv2d_1a_3x3')
            print('tensor 1:' + str(net.get_shape().as_list()))
 
            net = slim.conv2d(net,32,[3,3],scope='conv2d_2a_3x3')
            print('tensor 2:' + str(net.get_shape().as_list()))
 
            net = slim.conv2d(net,64,[3,3],padding='SAME',scope='conv2d_2b_3x3')
            print('tensor 3:' + str(net.get_shape().as_list()))
 
            net = slim.max_pool2d(net,[3,3],stride=2,scope='maxpool_3a_3x3')
            print('tensor 4:' + str(net.get_shape().as_list()))
 
            net = slim.conv2d(net,80,[1,1],scope='conv2d_3b_1x1')
            print('tensor 5:' + str(net.get_shape().as_list()))
 
            net = slim.conv2d(net,192,[3,3],scope='conv2d_4a_3x3')
            print('tensor 6:' + str(net.get_shape().as_list()))
 
            net = slim.max_pool2d(net,[3,3],stride=2,scope='maxpool_5a_3x3')
            print('tensor 7:' + str(net.get_shape().as_list()))
 
        with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],stride=1,padding='SAME'):
            with tf.variable_scope('mixed_5b'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,64,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,48,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,64,[5,5],scope='conv2d_0b_5x5')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,64,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='conv2d_0c_3x3')
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,32,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 8:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_5c'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,64,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,48,[1,1],scope='conv2d_0b_1x1')
                    branch_1 = slim.conv2d(branch_1,64,[5,5],scope='conv2d_0c_5x5')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,64,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='conv2d_0c_3x3')
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,64,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 9:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_5d'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,64,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,48,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,64,[5,5],scope='conv2d_0b_5x5')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,64,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='conv2d_0c_3x3')
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,64,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 10:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_6a'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,384,[3,3],stride=2,padding='VALID',scope='conv2d_1a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,64,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,96,[3,3],scope='conv2d_0b_3x3')
                    branch_1 = slim.conv2d(branch_1,96,[3,3],stride=2,padding='VALID',scope='conv2d_1a_1x1')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.max_pool2d(net,[3,3],stride=2,padding='VALID',scope='maxpool_1a_3x3')
 
                net = tf.concat([branch_0,branch_1,branch_2],3)
                print('tensor 11:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_6b'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,128,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,128,[1,7],scope='conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='conv2d_0c_7x1')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,128,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,128,[7,1],scope='conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2,128,[1,7],scope='conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2,128,[7,1],scope='conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='conv2d_0e_1x7')
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 12:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_6c'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,160,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,160,[1,7],scope='conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='conv2d_0c_7x1')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,160,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,160,[7,1],scope='conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2,160,[1,7],scope='conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2,160,[7,1],scope='conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='conv2d_0e_1x7')
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 13:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_6d'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,160,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,160,[1,7],scope='conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='conv2d_0c_7x1')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,160,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,160,[7,1],scope='conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2,160,[1,7],scope='conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2,160,[7,1],scope='conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='conv2d_0e_1x7')
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 14:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_6e'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,192,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,192,[1,7],scope='conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='conv2d_0c_7x1')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,192,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,192,[7,1],scope='conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2,192,[7,1],scope='conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='conv2d_0e_1x7')
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 15:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_7a'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='conv2d_0a_1x1')
                    branch_0 = slim.conv2d(branch_0,320,[3,3],stride=2,padding='VALID',scope='conv2d_1a_3x3')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,192,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,192,[1,7],scope='conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='conv2d_0c_7x1')
                    branch_1 = slim.conv2d(branch_1,192,[3,3],stride=2,padding='VALID',scope='conv2d_1a_3x3')
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.max_pool2d(net,[3,3],stride=2,padding='VALID',scope='maxpool_1a_3x3')
 
                net = tf.concat([branch_0,branch_1,branch_2],3)
                print('tensor 16:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_7b'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,320,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,384,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = tf.concat([
                        slim.conv2d(branch_1,384,[1,3],scope='conv2d_0b_1x3'),
                        slim.conv2d(branch_1,384,[3,1],scope='conv2d_0b_3x1')
                    ],3)
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,448,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,384,[3,3],scope='conv2d_0b_3x3')
                    branch_2 = tf.concat([
                        slim.conv2d(branch_2,384,[1,3],scope='conv2d_0c_1x3'),
                        slim.conv2d(branch_2,384,[3,1],scope='conv2d_0d_3x1')
                    ],3)
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 17:' + str(net.get_shape().as_list()))
 
 
            with tf.variable_scope('mixed_7c'):
                with tf.variable_scope('branch_0'):
                    branch_0 = slim.conv2d(net,320,[1,1],scope='conv2d_0a_1x1')
                with tf.variable_scope('branch_1'):
                    branch_1 = slim.conv2d(net,384,[1,1],scope='conv2d_0a_1x1')
                    branch_1 = tf.concat([
                        slim.conv2d(branch_1,384,[1,3],scope='conv2d_0b_1x3'),
                        slim.conv2d(branch_1,384,[3,1],scope='conv2d_0c_3x1')],3)
                with tf.variable_scope('branch_2'):
                    branch_2 = slim.conv2d(net,448,[1,1],scope='conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,384,[3,3],scope='conv2d_0b_3x3')
                    branch_2 = tf.concat([
                        slim.conv2d(branch_2,384,[1,3],scope='conv2d_0c_1x3'),
                        slim.conv2d(branch_2,384,[3,1],scope='conv2d_0d_3x1')],3)
                with tf.variable_scope('branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='avgpool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='conv2d_0b_1x1')
 
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
                print('tensor 18:' + str(net.get_shape().as_list()))
 
    with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],stride=1,padding='SAME'):
        with tf.variable_scope('logits'):
            net = slim.avg_pool2d(net,[3,3],padding='VALID',scope='avgpool_1a_3x3')
            print('tensor 19:' + str(net.get_shape().as_list()))
 
            net = slim.dropout(net,keep_prob=keep_prob,scope='dropout_1b')
 
            logits = slim.conv2d(net, char_size,[2,2],padding='VALID',activation_fn=None,normalizer_fn=None,
                                 scope='conv2d_1c_2x2')
            print('logits 1:' + str(logits.get_shape().as_list()))
 
            logits = tf.squeeze(logits,[1,2],name='spatialsqueeze')
            print('logits 2:' + str(logits.get_shape().as_list()))
 
    regularization_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
 
    total_loss = loss + regularization_loss
    print('get total_loss')
 
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32))
 
    global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
    rate = tf.train.exponential_decay(2e-3, global_step, decay_steps=2000, decay_rate=0.97, staircase=True)
 
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        train_op = tf.train.AdamOptimizer(learning_rate=rate).minimize(total_loss, global_step=global_step)
 
    probabilities = tf.nn.softmax(logits)
 
    tf.summary.scalar('loss', loss)
    tf.summary.scalar('accuracy', accuracy)
    merged_summary_op = tf.summary.merge_all()
    predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)
    accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32))
 
    return {'images': images,
            'labels': labels,
            'keep_prob': keep_prob,
            'top_k': top_k,
            'global_step': global_step,
            'train_op': train_op,
            'loss': total_loss,
            'accuracy': accuracy,
            'accuracy_top_k': accuracy_in_top_k,
            'merged_summary_op': merged_summary_op,
            'predicted_distribution': probabilities,
            'predicted_index_top_k': predicted_index_top_k,
            'predicted_val_top_k': predicted_val_top_k}
 
用resnet v2的:
resnet_v2.default_image_size = 128
 
 
def resnet_v2_50(inputs,
                 num_classes=None,
                 is_training=True,
                 global_pool=True,
                 output_stride=None,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='resnet_v2_50'):
    """ResNet-50 model of [1]. See resnet_v2() for arg and return description."""
    blocks = [
        resnet_v2_block('block1', base_depth=64, num_units=3, stride=2),
        resnet_v2_block('block2', base_depth=128, num_units=4, stride=2),
        resnet_v2_block('block3', base_depth=256, num_units=6, stride=2),
        resnet_v2_block('block4', base_depth=512, num_units=3, stride=1),
    ]
    return resnet_v2(inputs, blocks, num_classes, is_training=is_training,
                     global_pool=global_pool, output_stride=output_stride,
                     include_root_block=True, spatial_squeeze=spatial_squeeze,
                     reuse=reuse, scope=scope)
 
 
resnet_v2_50.default_image_size = resnet_v2.default_image_size
 
 
def resnet_v2_101(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
                  spatial_squeeze=True,
                  reuse=None,
                  scope='resnet_v2_101'):
    """ResNet-101 model of [1]. See resnet_v2() for arg and return description."""
    blocks = [
        resnet_v2_block('block1', base_depth=64, num_units=3, stride=2),
        resnet_v2_block('block2', base_depth=128, num_units=4, stride=2),
        resnet_v2_block('block3', base_depth=256, num_units=23, stride=2),
        resnet_v2_block('block4', base_depth=512, num_units=3, stride=1),
    ]
    return resnet_v2(inputs, blocks, num_classes, is_training=is_training,
                     global_pool=global_pool, output_stride=output_stride,
                     include_root_block=True, spatial_squeeze=spatial_squeeze,
                     reuse=reuse, scope=scope)
                      
def build_graph(top_k, is_training):
    # with tf.device('/cpu:0'):
    keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')
    images = tf.placeholder(dtype=tf.float32, shape=[None, 128, 128, 1], name='image_batch')
    labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')
 
    logits, _ = resnet_v2_50(images, num_classes=3755, is_training=is_training, global_pool=True,
                             output_stride=None, spatial_squeeze=True, reuse=None
     
-----------------------------  

  

posted @   bonelee  阅读(3909)  评论(13编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
点击右上角即可分享
微信分享提示