SMOTE RF MLP demo use cross_val_score to find best argument 处理不平衡数据的demo代码 先做smote处理 再用交叉验证找到最好的模型参数 实践表明MLP更好

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# _*_coding:UTF-8_*_
from sklearn.externals.six import StringIO 
from sklearn import tree
import pydot
import sklearn
import numpy as np
import sys
import pickle
import os
from sklearn.cross_validation import train_test_split
import sklearn.ensemble
from sklearn.model_selection import cross_val_score
# from sklearn.ensemble import ExtraTreesClassifier
from sklearn import preprocessing
import pdb
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import StratifiedShuffleSplit
 
import os
import collections
import imblearn
 
 
def iterbrowse(path):         
    for home, dirs, files in os.walk(path):
        for filename in files:
            yield os.path.join(home, filename)
 
def get_data(filename):
    white_verify = []
    with open(filename) as f:
        lines = f.readlines()
        data = {}
        for line in lines:
            a = line.split("\t")
            if len(a) != 78:
                print(line)
                raise Exception("fuck")
            white_verify.append([float(n) for n in a[3:]])
    return white_verify
 
 
# 显示测试结果
def show_cm(cm, labels):
    # Compute percentanges
    percent = (cm * 100.0) / np.array(np.matrix(cm.sum(axis=1)).T)
    print 'Confusion Matrix Stats'
    for i, label_i in enumerate(labels):
        for j, label_j in enumerate(labels):
            print "%s/%s: %.2f%% (%d/%d)" % (label_i, label_j, (percent[i][j]), cm[i][j], cm[i].sum())
 
 
def save_model_to_disk(name, model, model_dir='.'):
    serialized_model = pickle.dumps(model, protocol=pickle.HIGHEST_PROTOCOL)
    model_path = os.path.join(model_dir, name + '.model')
    print 'Storing Serialized Model to Disk (%s:%.2fMeg)' % (name, len(serialized_model) / 1024.0 / 1024.0)
    open(model_path, 'wb').write(serialized_model)
 
 
wanted_feature = {
15, #正向头部直方图中位数,-----H
12, # 正向头部直方图最小,-----H
14, #正向头部直方图平均数,-----H
13, # 正向头部直方图最大,-----H
16, #正向头部直方图标准差, -----H
52, #反向头部直方图不同长度类型数, -----M
51, #反向头部直方图平均数, --------------H
47, #反向头部直方图最小,--------------H
48, #反向头部直方图最大,--------------H
49, #反向头部直方图平均数,--------------H
50, #反向头部直方图平均数,--------------H
23, #正向载荷直方图最大, --------------H
24, #正向载荷直方图平均值,--------------H
25, #正向载荷直方图中位数,--------------H
26, #正向载荷直方图标准差,--------------H
17, #正向头部直方图不同长度类型数,---H
46, #反向包文的时间间隔(时间/包数), ----H
28, #正向载荷直方图小于128字节数个数,----H
29, #正向载荷直方图≥128、<512字节数个数,----H
30, #正向载荷直方图≥512、<1024字节数个数,----H
31, #正向载荷直方图>1024字节数个数,----H
57, #x反向载荷直方图最小,--------------H
60, #反向载荷直方图中位数,--------------H
59, #反向载荷直方图平均值, --------------H
61, #反向载荷直方图标准差,--------------H
58, #反向载荷直方图最大,--------------H
42, #反向当前流的数据包数量,
21, #正向头部直方图大于等于40字节数个数, -----------------------H
56, #反向头部直方图大于等于40字节数个数,------------------------H
65, #反向载荷直方图>1024字节数个数,------------------------H
63, #反向载荷直方图小于128字节数个数,------------------------H
64, #反向载荷直方图≥128、<512字节数个数, ------------------------H
66, #反向载荷直方图≥512、<1024字节数个数,------------------------H
}
 
 
unwanted_features = {6, 7, 8, 41,42,43,67,68,69,70,71,72,73,74,75}
 
def get_wanted_data(x):
    """
    return x
    """
    ans = []
    for item in x:
        #row = [data for i, data in enumerate(item) if i+6 in wanted_feature]
        row = [data for i, data in enumerate(item) if i+6 not in unwanted_features]
        ans.append(row)
        #assert len(row) == len(wanted_feature)
        assert len(row) == len(x[0])-len(unwanted_features)
    return ans
 
if __name__ == '__main__':
    # pdb.set_trace()
    neg_file = "cc_data/black/black_all.txt"
    pos_file = "cc_data/white/white_all.txt"
    X = []
    y = []
    if os.path.isfile(pos_file):
        if pos_file.endswith('.txt'):
            pos_set = np.genfromtxt(pos_file)
        elif pos_file.endswith('.npy'):
            pos_set = np.load(pos_file)
        X.extend(pos_set)
        y += [0] * len(pos_set)
    print("len of white X:", len(X))
    l = len(X)
    if os.path.isfile(neg_file):
        if neg_file.endswith('.txt'):
            neg_set = np.genfromtxt(neg_file)
        elif neg_file.endswith('.npy'):
            neg_set = np.load(neg_file)
         
        #X.extend(list(neg_set)*5)
        #y += [1] * (5*len(neg_set))
        X.extend(neg_set)
        y += [1] * len(neg_set)
    print("len of black X:", len(X)-l)
 
    print("len of X:", len(X))
    print("X sample:", X[:3])
    print("len of y:", len(y))
    print("y sample:", y[:3])
    X = [x[3:] for x in X]
    X = get_wanted_data(X)
    print("filtered X sample:", X[:1])
 
    black_verify = []
    for f in iterbrowse("todo/top"):
        print(f)
        black_verify += get_data(f)
    #ValueError: operands could not be broadcast together with shapes (1,74) (75,) (1,74)
    black_verify = get_wanted_data(black_verify)
    print(black_verify)
    black_verify_labels = [1]*len(black_verify)
 
    white_verify = get_data("todo/white_verify.txt")
    white_verify = get_wanted_data(white_verify)
    print(white_verify)
    white_verify_labels = [0]*len(white_verify)
 
    unknown_verify = get_data("todo/pek_feature74.txt")
    unknown_verify = get_wanted_data(unknown_verify)
    print(unknown_verify)
 
    black_verify2 = get_data("todo/x_rat.txt")
    black_verify2 = get_wanted_data(black_verify2)
    print(black_verify2)
 
    black_verify_labels2 = [1]*len(black_verify2)
    """
    # Smote use KNN, so use standard scaler
    """
    from sklearn import preprocessing
    scaler = preprocessing.StandardScaler().fit(X)
    #scaler = preprocessing.MinMaxScaler().fit(X)
    X = scaler.transform(X)
    print("standard X sample:", X[:3])
 
    black_verify = scaler.transform(black_verify)
    print(black_verify)
 
    white_verify = scaler.transform(white_verify)
    print(white_verify)
 
    unknown_verify = scaler.transform(unknown_verify)
    print(unknown_verify)
   
    black_verify2 = scaler.transform(black_verify2)
    print(black_verify2)
    # ValueError: operands could not be broadcast together with shapes (756140,75) (42,75) (756140,75)
    for i in range(200): # add weight 加大必须检出数据的权重,因为只有10+个样本所以x200增多
        X = np.concatenate((X, black_verify))
        y += black_verify_labels
 
 
    y = np.array(y)
 
    labels = ['white', 'CC']
    #if True:
    for depth in (128, 64, 32):
      print "***"*20
      print "hidden_layer_sizes=>", depth
      sss = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=42)
      for train_index, test_index in sss.split(X, y):
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]
 
        #ratio_of_train = 0.8
        #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(1 - ratie_of_train))
 
        print "smote before:"
        print(sorted(collections.Counter(y_train).items()))
        print(sorted(collections.Counter(y_test).items()))
        from imblearn.over_sampling import SMOTE
        X_train, y_train = SMOTE().fit_sample(X_train, y_train)
        print "smote after:"
        print(sorted(collections.Counter(y_train).items()))
        X_test2, y_test2 = SMOTE().fit_sample(X_test, y_test)
 
        # X_train=preprocessing.normalize(X_train)
        # X_test=preprocessing.normalize(X_test)
        """
        from sklearn.linear_model import LogisticRegression
        clf = LogisticRegression(C=0.1, penalty='l2', tol=0.01)
 
 
     
        import xgboost as xgb
        clf = xgb.XGBClassifier(learning_rate=0.1,n_estimators=50,max_depth=6, objective= 'binary:logistic',nthread=40,scale_pos_weight=0.02,seed=666) 
        clf = sklearn.ensemble.RandomForestClassifier(n_estimators=100, n_jobs=10, max_depth=3, random_state=666, oob_score=True)
        """
        clf = MLPClassifier(batch_size=128, learning_rate='adaptive', max_iter=1024,
                            hidden_layer_sizes=(depth,), random_state=666)
 
        clf.fit(X_train, y_train)
        print "test confusion_matrix:"
        # print clf.feature_importances_
        y_pred = clf.predict(X_test)
        print(sklearn.metrics.confusion_matrix(y_test, y_pred))
        print(classification_report(y_test, y_pred))
 
        print "test confusion_matrix (SMOTE):"
        y_pred2 = clf.predict(X_test2)
        print(sklearn.metrics.confusion_matrix(y_test2, y_pred2))
        print(classification_report(y_test2, y_pred2))
 
        print "all confusion_matrix:"
        y_pred = clf.predict(X)
        print(sklearn.metrics.confusion_matrix(y, y_pred))
        print(classification_report(y, y_pred))
     
        print "black verify confusion_matrix:"
        black_verify_pred = clf.predict(black_verify)
        print(black_verify_pred)
        print(classification_report(black_verify_labels, black_verify_pred))
     
        print "black verify2 confusion_matrix:"
        black_verify_pred2 = clf.predict(black_verify2)
        print(black_verify_pred2)
        print(classification_report(black_verify_labels2, black_verify_pred2))
 
        print "white verify confusion_matrix:"
        white_verify_pred = clf.predict(white_verify)
        print(white_verify_pred)
        print(classification_report(white_verify_labels, white_verify_pred))
     
        print("unknown_verify:")
        print(clf.predict(unknown_verify))
      print "hidden_layer_sizes=>", depth
      print "***"*20
    else:
        #clf = pickle.loads(open("mpl-acc97-recall98.pkl", 'rb').read())
        clf = pickle.loads(open("mlp-add-topx10.model", 'rb').read())
        y_pred = clf.predict(X)
        print(sklearn.metrics.confusion_matrix(y, y_pred))
        print(classification_report(y, y_pred))
        import sys
    sys.exit(0)
 
    """
    dot_data = StringIO()
    tree.export_graphviz(clf, out_file=dot_data)
    graph = pydot.graph_from_dot_data(dot_data.getvalue())
    graph.write_pdf("iris.pdf")         
    """
 
    model_name = "rf_smote"
    save_model_to_disk(model_name, clf)
 
    # print clf.oob_score_
    scores = cross_val_score(clf, X, y, cv=5)
    print "scores:"
    print scores

 实验结果:

MLP 隐藏层神经元个数 128

test confusion_matrix (SMOTE): 测试数据的混淆矩阵
[[131946    120]
 [   299 131767]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       1.00      1.00      1.00    132066

avg / total       1.00      1.00      1.00    264132

all confusion_matrix: 整体数据混淆矩阵
[[659846    483]
 [    52  32474]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    660329
          1       0.99      1.00      0.99     32526

avg / total       1.00      1.00      1.00    692855

black verify confusion_matrix: #需要必须检测出来的样本 OK 都检出了
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1]
             precision    recall  f1-score   support

          1       1.00      1.00      1.00        42

avg / total       1.00      1.00      1.00        42

black verify2 confusion_matrix: # 现网是黑的数据,很难区分的
[0 0 0 0 0 0 0 1 1 1 1]
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         0
          1       1.00      0.36      0.53        11

avg / total       1.00      0.36      0.53        11

white verify confusion_matrix: # 现网是白的数据 很难区分的
[1 1 1 1 0 0 0]
             precision    recall  f1-score   support

          0       1.00      0.43      0.60         7
          1       0.00      0.00      0.00         0

avg / total       1.00      0.43      0.60         7

unknown_verify: # 现网采集的 有好些是黑的数据 希望检出率高 但是不能过高
[1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1
 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1] 现网验证检出率还不错

 

隐藏层为64

************************************************************
hidden_layer_sizes=> 64
smote before:
[(0, 528263), (1, 26021)]
[(0, 132066), (1, 6505)]
smote after:
[(0, 528263), (1, 528263)]
test confusion_matrix:
[[131912    154]
 [    24   6481]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       0.98      1.00      0.99      6505

avg / total       1.00      1.00      1.00    138571

test confusion_matrix (SMOTE):
[[131912    154]
 [   193 131873]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       1.00      1.00      1.00    132066

avg / total       1.00      1.00      1.00    264132

all confusion_matrix:
[[659566    763]
 [    34  32492]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    660329
          1       0.98      1.00      0.99     32526

avg / total       1.00      1.00      1.00    692855

black verify confusion_matrix:
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1]
             precision    recall  f1-score   support

          1       1.00      1.00      1.00        42

avg / total       1.00      1.00      1.00        42

black verify2 confusion_matrix:
[0 0 0 0 0 0 0 1 1 1 1]
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         0
          1       1.00      0.36      0.53        11

avg / total       1.00      0.36      0.53        11

white verify confusion_matrix:
[1 1 0 1 0 0 0]
             precision    recall  f1-score   support

          0       1.00      0.57      0.73         7
          1       0.00      0.00      0.00         0

avg / total       1.00      0.57      0.73         7

unknown_verify:
[1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1
 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1]
看起来也还不错!

 

看看随机森林的表现:depth=15,100棵树

 

test confusion_matrix:
[[132045     21]
 [    16   4818]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       1.00      1.00      1.00      4834

avg / total       1.00      1.00      1.00    136900

test confusion_matrix (SMOTE):
[[132045     21]
 [   246 131820]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       1.00      1.00      1.00    132066

avg / total       1.00      1.00      1.00    264132

all confusion_matrix:
[[660227    102]
 [    29  24139]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    660329
          1       1.00      1.00      1.00     24168

avg / total       1.00      1.00      1.00    684497

black verify confusion_matrix:
[0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1
 1 1 1 1 1] 这个是必须要全部检出的
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         0
          1       1.00      0.67      0.80        42

avg / total       1.00      0.67      0.80        42

white verify confusion_matrix:
[0 0 0 0 0 0 1]
             precision    recall  f1-score   support

          0       1.00      0.86      0.92         7
          1       0.00      0.00      0.00         0

avg / total       1.00      0.86      0.92         7

unknown_verify: 现网的检出太低了!过拟合比较严重。。。。
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

depth=14的一个

test confusion_matrix:
[[132038     28]
 [    16   4818]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       0.99      1.00      1.00      4834

avg / total       1.00      1.00      1.00    136900

test confusion_matrix (SMOTE):
[[132038     28]
 [   257 131809]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       1.00      1.00      1.00    132066

avg / total       1.00      1.00      1.00    264132

all confusion_matrix:
[[660220    109]
 [    34  24134]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    660329
          1       1.00      1.00      1.00     24168

avg / total       1.00      1.00      1.00    684497

black verify confusion_matrix:
[1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1
 1 1 1 1 1]
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         0
          1       1.00      0.64      0.78        42

avg / total       1.00      0.64      0.78        42

white verify confusion_matrix:
[0 0 0 0 0 1 1]
             precision    recall  f1-score   support

          0       1.00      0.71      0.83         7
          1       0.00      0.00      0.00         0

avg / total       1.00      0.71      0.83         7

unknown_verify:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
稍微好点,

 

depth=13的

test confusion_matrix (SMOTE):
[[132037     29]
 [   301 131765]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       1.00      1.00      1.00    132066

avg / total       1.00      1.00      1.00    264132

all confusion_matrix:
[[660217    112]
 [    36  24132]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    660329
          1       1.00      1.00      1.00     24168

avg / total       1.00      1.00      1.00    684497

black verify confusion_matrix:
[0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1
 0 1 1 1 1]
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         0
          1       1.00      0.55      0.71        42

avg / total       1.00      0.55      0.71        42

white verify confusion_matrix:
[0 0 0 0 0 1 1]
             precision    recall  f1-score   support

          0       1.00      0.71      0.83         7
          1       0.00      0.00      0.00         0

avg / total       1.00      0.71      0.83         7

unknown_verify:
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
也差不多,再调整depth也差不多。

整体表现,没有MLP好!

 

看看逻辑回归的:

test confusion_matrix (SMOTE):
[[114699  17367]
 [ 11921 120145]]
             precision    recall  f1-score   support

          0       0.91      0.87      0.89    132066
          1       0.87      0.91      0.89    132066

avg / total       0.89      0.89      0.89    264132

all confusion_matrix:
[[573083  87246]
 [  2877  29649]]
             precision    recall  f1-score   support

          0       1.00      0.87      0.93    660329
          1       0.25      0.91      0.40     32526

avg / total       0.96      0.87      0.90    692855

black verify confusion_matrix:
[1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0
 1 1 0 1 1]
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         0
          1       1.00      0.88      0.94        42

avg / total       1.00      0.88      0.94        42

black verify2 confusion_matrix:
[1 1 0 0 0 0 0 1 1 1 1]
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         0
          1       1.00      0.55      0.71        11

avg / total       1.00      0.55      0.71        11

white verify confusion_matrix:
[1 1 1 1 1 1 1]
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         7
          1       0.00      0.00      0.00         0

avg / total       0.00      0.00      0.00         7

unknown_verify:
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
整体精度不够。才0.25.。。。

 

看看xgboost的:

[[132018     48]
 [    11   6494]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       0.99      1.00      1.00      6505

avg / total       1.00      1.00      1.00    138571

test confusion_matrix (SMOTE):
[[132018     48]
 [    82 131984]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    132066
          1       1.00      1.00      1.00    132066

avg / total       1.00      1.00      1.00    264132

all confusion_matrix:
[[660134    195]
 [    29  32497]]
             precision    recall  f1-score   support

          0       1.00      1.00      1.00    660329
          1       0.99      1.00      1.00     32526

avg / total       1.00      1.00      1.00    692855

black verify confusion_matrix:
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1]
             precision    recall  f1-score   support

          1       1.00      1.00      1.00        42

avg / total       1.00      1.00      1.00        42

black verify2 confusion_matrix:
[0 0 0 0 0 0 0 1 0 1 1]
             precision    recall  f1-score   support

          0       0.00      0.00      0.00         0
          1       1.00      0.27      0.43        11

avg / total       1.00      0.27      0.43        11

white verify confusion_matrix:
[0 0 1 0 1 0 1]
             precision    recall  f1-score   support

          0       1.00      0.57      0.73         7
          1       0.00      0.00      0.00         0

avg / total       1.00      0.57      0.73         7

unknown_verify:
[0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0
 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0]
整体看来比随机森林好!

 

posted @   bonelee  阅读(529)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-05-26 大数据平台安全标准设计
点击右上角即可分享
微信分享提示