神经网络结构设计 不一定是第一层神经元是输入维度数
def get_model(input_dim=33):
# Build neural network
net = tflearn.input_data(shape=[None, input_dim])
net = batch_normalization(net)
#net = tflearn.fully_connected(net, input_dim) #去掉这层的话 精度95+,如果加上精度很难上95%
net = tflearn.fully_connected(net, 128, activation='tanh')
net = dropout(net, 0.5)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='sgd',
loss='categorical_crossentropy', name='target') # optimizer='sgd'
# Define model
model = tflearn.DNN(net)
#filename = 'CC_model_999.tflearn'
#model.load(filename)
#print filename + " loaded OK"
return model