python 特征选择 绘图 + mine
demo代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | # _*_coding:UTF-8_*_ import numpy as np import sys import pandas as pd from pandas import Series,DataFrame import numpy as np import sys from sklearn import preprocessing from sklearn.ensemble import ExtraTreesClassifier import os from minepy import MINE def iterbrowse(path): for home, dirs, files in os.walk(path): for filename in files: yield os.path.join(home, filename) def get_data(filename): white_verify = [] with open (filename) as f: lines = f.readlines() data = {} for line in lines: a = line.split( "\t" ) if len (a) ! = 78 : print (line) raise Exception( "fuck" ) white_verify.append([ float (n) for n in a[ 3 :]]) return white_verify if __name__ = = '__main__' : # pdb.set_trace() neg_file = "cc_data/black_all.txt" pos_file = "cc_data/white_all.txt" X = [] y = [] if os.path.isfile(pos_file): if pos_file.endswith( '.txt' ): pos_set = np.genfromtxt(pos_file) elif pos_file.endswith( '.npy' ): pos_set = np.load(pos_file) X.extend(pos_set) y + = [ 0 ] * len (pos_set) if os.path.isfile(neg_file): if neg_file.endswith( '.txt' ): neg_set = np.genfromtxt(neg_file) elif neg_file.endswith( '.npy' ): neg_set = np.load(neg_file) ''' X.extend(list(neg_set) * 5) y += [1] * (5 * len(neg_set)) ''' X.extend(neg_set) y + = [ 1 ] * len (neg_set) print ( "len of X:" , len (X)) print ( "X sample:" , X[: 3 ]) print ( "len of y:" , len (y)) print ( "y sample:" , y[: 3 ]) X = [x[ 3 :] for x in X] print ( "filtered X sample:" , X[: 3 ]) cols = [ str (i + 6 ) for i in range ( len (X[ 0 ]))] clf = ExtraTreesClassifier() clf.fit(X, y) print (clf.feature_importances_) print "Features sorted by their score:" print sorted ( zip (clf.feature_importances_, cols), reverse = True ) black_verify = [] for f in iterbrowse( "todo/top" ): print (f) black_verify + = get_data(f) # ValueError: operands could not be broadcast together with shapes (1,74) (75,) (1,74) print (black_verify) black_verify_labels = [ 3 ] * len (black_verify) white_verify = get_data( "todo/white_verify.txt" ) print (white_verify) white_verify_labels = [ 2 ] * len (white_verify) unknown_verify = get_data( "todo/pek_feature74.txt" ) print (unknown_verify) # extend data X = np.concatenate((X, black_verify)) y + = black_verify_labels X = np.concatenate((X, white_verify)) y + = white_verify_labels #################################### plot #################################### data_train = pd.DataFrame(X) # cols = [str(i) for i in range(6, 81)] data_train.columns = cols # add label column # data_train = data_train.assign(label=pd.Series(y)) data_train[ "label" ] = pd.Series(y) print (data_train.info()) print (data_train.columns) import matplotlib.pyplot as plt for col in cols: fig = plt.figure(figsize = ( 20 , 16 ), dpi = 8 ) fig. set (alpha = 0.2 ) plt.figure() data_train[data_train.label = = 0.0 ][col].plot() data_train[data_train.label = = 1.0 ][col].plot() data_train[data_train.label = = 2.0 ][col].plot() data_train[data_train.label = = 3.0 ][col].plot() plt.xlabel(u "sample data id" ) plt.ylabel(u "value" ) plt.title(col) plt.legend((u 'white' , u 'black' , u "white-todo" , u "black-todo" ), loc = 'best' ) plt.show() print "calculate MINE mic value:" for col in cols: print col, mine = MINE(alpha = 0.6 , c = 15 , est = "mic_approx" ) # http://minepy.readthedocs.io/en/latest/python.html#second-example mine.compute_score(data_train[col], y) print "MIC=" , mine.mic() sys.exit( - 1 ) |
extend data 表示待预测的数据
关于mic:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from minepy import MINE
rs = np.random.RandomState(seed=0)
def mysubplot(x, y, numRows, numCols, plotNum,
xlim=(-4, 4), ylim=(-4, 4)):
r = np.around(np.corrcoef(x, y)[0, 1], 1)
mine = MINE(alpha=0.6, c=15, est="mic_approx")
mine.compute_score(x, y)
mic = np.around(mine.mic(), 1)
ax = plt.subplot(numRows, numCols, plotNum,
xlim=xlim, ylim=ylim)
ax.set_title('Pearson r=%.1f\nMIC=%.1f' % (r, mic),fontsize=10)
ax.set_frame_on(False)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.plot(x, y, ',')
ax.set_xticks([])
ax.set_yticks([])
return ax
def rotation(xy, t):
return np.dot(xy, [[np.cos(t), -np.sin(t)], [np.sin(t), np.cos(t)]])
def mvnormal(n=1000):
cors = [1.0, 0.8, 0.4, 0.0, -0.4, -0.8, -1.0]
for i, cor in enumerate(cors):
cov = [[1, cor],[cor, 1]]
xy = rs.multivariate_normal([0, 0], cov, n)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, i+1)
def rotnormal(n=1000):
ts = [0, np.pi/12, np.pi/6, np.pi/4, np.pi/2-np.pi/6,
np.pi/2-np.pi/12, np.pi/2]
cov = [[1, 1],[1, 1]]
xy = rs.multivariate_normal([0, 0], cov, n)
for i, t in enumerate(ts):
xy_r = rotation(xy, t)
mysubplot(xy_r[:, 0], xy_r[:, 1], 3, 7, i+8)
def others(n=1000):
x = rs.uniform(-1, 1, n)
y = 4*(x**2-0.5)**2 + rs.uniform(-1, 1, n)/3
mysubplot(x, y, 3, 7, 15, (-1, 1), (-1/3, 1+1/3))
y = rs.uniform(-1, 1, n)
xy = np.concatenate((x.reshape(-1, 1), y.reshape(-1, 1)), axis=1)
xy = rotation(xy, -np.pi/8)
lim = np.sqrt(2+np.sqrt(2)) / np.sqrt(2)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 16, (-lim, lim), (-lim, lim))
xy = rotation(xy, -np.pi/8)
lim = np.sqrt(2)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 17, (-lim, lim), (-lim, lim))
y = 2*x**2 + rs.uniform(-1, 1, n)
mysubplot(x, y, 3, 7, 18, (-1, 1), (-1, 3))
y = (x**2 + rs.uniform(0, 0.5, n)) * \
np.array([-1, 1])[rs.random_integers(0, 1, size=n)]
mysubplot(x, y, 3, 7, 19, (-1.5, 1.5), (-1.5, 1.5))
y = np.cos(x * np.pi) + rs.uniform(0, 1/8, n)
x = np.sin(x * np.pi) + rs.uniform(0, 1/8, n)
mysubplot(x, y, 3, 7, 20, (-1.5, 1.5), (-1.5, 1.5))
xy1 = np.random.multivariate_normal([3, 3], [[1, 0], [0, 1]], int(n/4))
xy2 = np.random.multivariate_normal([-3, 3], [[1, 0], [0, 1]], int(n/4))
xy3 = np.random.multivariate_normal([-3, -3], [[1, 0], [0, 1]], int(n/4))
xy4 = np.random.multivariate_normal([3, -3], [[1, 0], [0, 1]], int(n/4))
xy = np.concatenate((xy1, xy2, xy3, xy4), axis=0)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 21, (-7, 7), (-7, 7))
plt.figure(facecolor='white')
mvnormal(n=800)
rotnormal(n=200)
others(n=800)
plt.tight_layout()
plt.show()

【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-24 LMDB中的mmap、Copy On Write、MVCC深入理解——讲得非常好,常来看看!
2017-05-24 golang LMDB入门例子——key range查询
2017-05-24 golang LMDB入门例子——尼玛,LMDB的文档真的是太少了
2017-05-24 golang import all 类似python import * 效果
2017-05-24 python lmdb demo 这接口和BDB一样恶心啊!
2017-05-24 ledisDB底层实现——本质上就是用leveldb这样的底层存储,和ssdb一样,meta里存的是hash、list等的元数据
2017-05-24 ssdb底层实现——ssdb底层是leveldb,leveldb根本上是skiplist(例如为存储多个list items,必然有多个item key,而非暴力string cat),用它来做redis的list和set等,势必在数据结构和算法层面上有诸多不适