densenet tensorflow 中文汉字手写识别
densenet 中文汉字手写识别,代码如下:
import tensorflow as tf import os import random import math import tensorflow.contrib.slim as slim import time import logging import numpy as np import pickle from PIL import Image import tensorflow as tf #from tflearn.layers.conv import global_avg_pool from tensorflow.contrib.layers import batch_norm, flatten from tensorflow.contrib.framework import arg_scope import numpy as np # Hyperparameter growth_k = 12 nb_block = 2 # how many (dense block + Transition Layer) ? init_learning_rate = 1e-4 epsilon = 1e-8 # AdamOptimizer epsilon dropout_rate = 0.2 # Momentum Optimizer will use nesterov_momentum = 0.9 weight_decay = 1e-4 # Label & batch_size class_num = 3755 batch_size = 128 total_epochs = 50 def conv_layer(input, filter, kernel, stride=1, layer_name="conv"): with tf.name_scope(layer_name): network = tf.layers.conv2d(inputs=input, filters=filter, kernel_size=kernel, strides=stride, padding='SAME') return network def Global_Average_Pooling(x, stride=1): #It is global average pooling without tflearn width = np.shape(x)[1] height = np.shape(x)[2] pool_size = [width, height] return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride) # The stride value does not matter """ return global_avg_pool(x, name='Global_avg_pooling') # But maybe you need to install h5py and curses or not """ def Batch_Normalization(x, training, scope): with arg_scope([batch_norm], scope=scope, updates_collections=None, decay=0.9, center=True, scale=True, zero_debias_moving_mean=True) : return tf.cond(training, lambda : batch_norm(inputs=x, is_training=training, reuse=None), lambda : batch_norm(inputs=x, is_training=training, reuse=True)) def Drop_out(x, rate, training) : return tf.layers.dropout(inputs=x, rate=rate, training=training) def Relu(x): return tf.nn.relu(x) def Average_pooling(x, pool_size=[2,2], stride=2, padding='VALID'): return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding) def Max_Pooling(x, pool_size=[3,3], stride=2, padding='VALID'): return tf.layers.max_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding) def Concatenation(layers) : return tf.concat(layers, axis=3) def Linear(x) : return tf.layers.dense(inputs=x, units=class_num, name='linear') class DenseNet(): def __init__(self, x, nb_blocks, filters, training): self.nb_blocks = nb_blocks self.filters = filters self.training = training self.model = self.Dense_net(x) def bottleneck_layer(self, x, scope): # print(x) with tf.name_scope(scope): x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1') x = Relu(x) x = conv_layer(x, filter=4 * self.filters, kernel=[1,1], layer_name=scope+'_conv1') x = Drop_out(x, rate=dropout_rate, training=self.training) x = Batch_Normalization(x, training=self.training, scope=scope+'_batch2') x = Relu(x) x = conv_layer(x, filter=self.filters, kernel=[3,3], layer_name=scope+'_conv2') x = Drop_out(x, rate=dropout_rate, training=self.training) # print(x) return x def transition_layer(self, x, scope): with tf.name_scope(scope): x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1') x = Relu(x) x = conv_layer(x, filter=self.filters, kernel=[1,1], layer_name=scope+'_conv1') x = Drop_out(x, rate=dropout_rate, training=self.training) x = Average_pooling(x, pool_size=[2,2], stride=2) return x def dense_block(self, input_x, nb_layers, layer_name): with tf.name_scope(layer_name): layers_concat = list() layers_concat.append(input_x) x = self.bottleneck_layer(input_x, scope=layer_name + '_bottleN_' + str(0)) layers_concat.append(x) for i in range(nb_layers - 1): x = Concatenation(layers_concat) x = self.bottleneck_layer(x, scope=layer_name + '_bottleN_' + str(i + 1)) layers_concat.append(x) x = Concatenation(layers_concat) return x def Dense_net(self, input_x): x = conv_layer(input_x, filter=2 * self.filters, kernel=[7,7], stride=2, layer_name='conv0') x = Max_Pooling(x, pool_size=[3,3], stride=2) for i in range(self.nb_blocks) : # 6 -> 12 -> 48 x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i)) x = self.transition_layer(x, scope='trans_'+str(i)) """ x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1') x = self.transition_layer(x, scope='trans_1') x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2') x = self.transition_layer(x, scope='trans_2') x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3') x = self.transition_layer(x, scope='trans_3') """ x = self.dense_block(input_x=x, nb_layers=32, layer_name='dense_final') # 100 Layer x = Batch_Normalization(x, training=self.training, scope='linear_batch') x = Relu(x) x = Global_Average_Pooling(x) x = flatten(x) x = Linear(x) # x = tf.reshape(x, [-1, 10]) return x def build_graph(top_k): # with tf.device('/cpu:0'): # keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob') images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='image_batch') # label = tf.placeholder(tf.float32, shape=[None, 10]) labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch') training_flag = tf.placeholder(tf.bool) logits = DenseNet(x=images, nb_blocks=nb_block, filters=growth_k, training=training_flag).model loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)) # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) """ l2_loss = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()]) optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=nesterov_momentum, use_nesterov=True) train = optimizer.minimize(cost + l2_loss * weight_decay) In paper, use MomentumOptimizer init_learning_rate = 0.1 but, I'll use AdamOptimizer """ global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False) rate = tf.train.exponential_decay(2e-4, global_step, decay_steps=2000, decay_rate=0.97, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate=rate, epsilon=epsilon) train_op = optimizer.minimize(loss, global_step=global_step) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32)) probabilities = logits tf.summary.scalar('loss', loss) tf.summary.scalar('accuracy', accuracy) merged_summary_op = tf.summary.merge_all() predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k) accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32)) return {'images': images, 'labels': labels, 'training_flag': training_flag, 'top_k': top_k, 'global_step': global_step, 'train_op': train_op, 'loss': loss, 'accuracy': accuracy, 'accuracy_top_k': accuracy_in_top_k, 'merged_summary_op': merged_summary_op, 'predicted_distribution': probabilities, 'predicted_index_top_k': predicted_index_top_k, 'predicted_val_top_k': predicted_val_top_k} logger = logging.getLogger('Training a chinese write char recognition') logger.setLevel(logging.INFO) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch = logging.StreamHandler() ch.setLevel(logging.INFO) logger.addHandler(ch) run_mode = "train" charset_size = class_num max_steps = 122002 save_steps = 1000 cur_test_acc = 0 """ # for online 3755 words training checkpoint_dir = '/aiml/dfs/checkpoint_888/' train_data_dir = '/aiml/data/train/' test_data_dir = '/aiml/data/test/' log_dir = '/aiml/dfs/' """ checkpoint_dir = './checkpoint_densenet/' train_data_dir = './data/train/' test_data_dir = './data/test/' log_dir = './' tf.app.flags.DEFINE_string('mode', run_mode, 'Running mode. One of {"train", "valid", "test"}') tf.app.flags.DEFINE_boolean('random_flip_up_down', True, "Whether to random flip up down") tf.app.flags.DEFINE_boolean('random_brightness', True, "whether to adjust brightness") tf.app.flags.DEFINE_boolean('random_contrast', True, "whether to random constrast") tf.app.flags.DEFINE_integer('charset_size', charset_size, "Choose the first `charset_size` character to conduct our experiment.") tf.app.flags.DEFINE_integer('image_size', 64, "Needs to provide same value as in training.") tf.app.flags.DEFINE_boolean('gray', True, "whether to change the rbg to gray") tf.app.flags.DEFINE_integer('max_steps', max_steps, 'the max training steps ') tf.app.flags.DEFINE_integer('eval_steps', 50, "the step num to eval") tf.app.flags.DEFINE_integer('save_steps', save_steps, "the steps to save") tf.app.flags.DEFINE_string('checkpoint_dir', checkpoint_dir, 'the checkpoint dir') tf.app.flags.DEFINE_string('train_data_dir', train_data_dir, 'the train dataset dir') tf.app.flags.DEFINE_string('test_data_dir', test_data_dir, 'the test dataset dir') tf.app.flags.DEFINE_string('log_dir', log_dir, 'the logging dir') ############################## # resume training tf.app.flags.DEFINE_boolean('restore', True, 'whether to restore from checkpoint') ############################## tf.app.flags.DEFINE_boolean('epoch', 10, 'Number of epoches') tf.app.flags.DEFINE_boolean('batch_size', 128, 'Validation batch size') FLAGS = tf.app.flags.FLAGS class DataIterator: def __init__(self, data_dir): # Set FLAGS.charset_size to a small value if available computation power is limited. truncate_path = data_dir + ('%05d' % FLAGS.charset_size) print(truncate_path) self.image_names = [] for root, sub_folder, file_list in os.walk(data_dir): if root < truncate_path: self.image_names += [os.path.join(root, file_path) for file_path in file_list] random.shuffle(self.image_names) self.labels = [int(file_name[len(data_dir):].split(os.sep)[0]) for file_name in self.image_names] @property def size(self): return len(self.labels) @staticmethod def data_augmentation(images): if FLAGS.random_flip_up_down: # images = tf.image.random_flip_up_down(images) images = tf.contrib.image.rotate(images, random.randint(0, 15) * math.pi / 180, interpolation='BILINEAR') if FLAGS.random_brightness: images = tf.image.random_brightness(images, max_delta=0.3) if FLAGS.random_contrast: images = tf.image.random_contrast(images, 0.8, 1.2) return images def input_pipeline(self, batch_size, num_epochs=None, aug=False): images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string) labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64) input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs) labels = input_queue[1] images_content = tf.read_file(input_queue[0]) images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32) if aug: images = self.data_augmentation(images) new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32) images = tf.image.resize_images(images, new_size) image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000, min_after_dequeue=10000) return image_batch, label_batch def train(): print('Begin training') train_feeder = DataIterator(FLAGS.train_data_dir) test_feeder = DataIterator(FLAGS.test_data_dir) with tf.Session() as sess: train_images, train_labels = train_feeder.input_pipeline(batch_size=FLAGS.batch_size, aug=True) test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size) graph = build_graph(top_k=1) sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) saver = tf.train.Saver() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val') start_step = 0 if FLAGS.restore: ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) print("restore from the checkpoint {0}".format(ckpt)) start_step += int(ckpt.split('-')[-1]) logger.info(':::Training Start:::') try: while not coord.should_stop(): start_time = time.time() train_images_batch, train_labels_batch = sess.run([train_images, train_labels]) feed_dict = {graph['images']: train_images_batch, graph['labels']: train_labels_batch, graph['training_flag']: True} _, loss_val, train_summary, step = sess.run( [graph['train_op'], graph['loss'], graph['merged_summary_op'], graph['global_step']], feed_dict=feed_dict) train_writer.add_summary(train_summary, step) end_time = time.time() logger.info("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val)) if step > FLAGS.max_steps: break accuracy_test = 0 if step % FLAGS.eval_steps == 1: test_images_batch, test_labels_batch = sess.run([test_images, test_labels]) feed_dict = {graph['images']: test_images_batch, graph['labels']: test_labels_batch, graph['training_flag']: False} accuracy_test, test_summary = sess.run( [graph['accuracy'], graph['merged_summary_op']], feed_dict=feed_dict) test_writer.add_summary(test_summary, step) logger.info('===============Eval a batch=======================') logger.info('the step {0} test accuracy: {1}' .format(step, accuracy_test)) logger.info('===============Eval a batch=======================') if step % FLAGS.save_steps == 1: logger.info('Save the ckpt of {0}'.format(step)) saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'), global_step=graph['global_step']) global cur_test_acc cur_test_acc = accuracy_test except tf.errors.OutOfRangeError: logger.info('==================Train Finished================') saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'), global_step=graph['global_step']) finally: coord.request_stop() coord.join(threads) def validation(): print('validation') test_feeder = DataIterator(FLAGS.test_data_dir) final_predict_val = [] final_predict_index = [] groundtruth = [] with tf.Session() as sess: test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size, num_epochs=1) graph = build_graph(top_k=3) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # initialize test_feeder's inside state coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) print("restore from the checkpoint {0}".format(ckpt)) print(':::Start validation:::') try: i = 0 acc_top_1, acc_top_k = 0.0, 0.0 while not coord.should_stop(): i += 1 start_time = time.time() test_images_batch, test_labels_batch = sess.run([test_images, test_labels]) feed_dict = {graph['images']: test_images_batch, graph['labels']: test_labels_batch, graph['training_flag']: False} batch_labels, probs, indices, acc_1, acc_k = sess.run([graph['labels'], graph['predicted_val_top_k'], graph['predicted_index_top_k'], graph['accuracy'], graph['accuracy_top_k']], feed_dict=feed_dict) final_predict_val += probs.tolist() final_predict_index += indices.tolist() groundtruth += batch_labels.tolist() acc_top_1 += acc_1 acc_top_k += acc_k end_time = time.time() logger.info("the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)" .format(i, end_time - start_time, acc_1, acc_k)) except tf.errors.OutOfRangeError: logger.info('==================Validation Finished================') acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size logger.info('top 1 accuracy {0} top k accuracy {1}'.format(acc_top_1, acc_top_k)) finally: coord.request_stop() coord.join(threads) return {'prob': final_predict_val, 'indices': final_predict_index, 'groundtruth': groundtruth} def inference(image): print('inference') temp_image = Image.open(image).convert('L') temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS) temp_image = np.asarray(temp_image) / 255.0 temp_image = temp_image.reshape([-1, 64, 64, 1]) with tf.Session() as sess: logger.info('========start inference============') # images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1]) # Pass a shadow label 0. This label will not affect the computation graph. graph = build_graph(top_k=3) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) predict_val, predict_index = sess.run([graph['predicted_val_top_k'], graph['predicted_index_top_k']], feed_dict={graph['images']: temp_image, graph['training_flag']: False}) return predict_val, predict_index def main(_): print(FLAGS.mode) if FLAGS.mode == "train": train() elif FLAGS.mode == 'validation': dct = validation() result_file = 'result.dict' logger.info('Write result into {0}'.format(result_file)) with open(result_file, 'wb') as f: pickle.dump(dct, f) logger.info('Write file ends') elif FLAGS.mode == 'inference': image_path = './data/00098/102544.png' final_predict_val, final_predict_index = inference(image_path) logger.info('the result info label {0} predict index {1} predict_val {2}'.format(190, final_predict_index, final_predict_val)) if __name__ == "__main__": tf.app.run()
densenet模型参考:https://github.com/taki0112/Densenet-Tensorflow
效果:
===============Eval a batch=======================
the step 34001.0 test accuracy: 0.765625
===============Eval a batch=======================