densenet tensorflow 中文汉字手写识别

densenet 中文汉字手写识别,代码如下:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import tensorflow as tf
import os
import random
import math
import tensorflow.contrib.slim as slim
import time
import logging
import numpy as np
import pickle
from PIL import Image
   
import tensorflow as tf
#from tflearn.layers.conv import global_avg_pool
from tensorflow.contrib.layers import batch_norm, flatten
from tensorflow.contrib.framework import arg_scope
import numpy as np
 
 
# Hyperparameter
growth_k = 12
nb_block = 2 # how many (dense block + Transition Layer) ?
init_learning_rate = 1e-4
epsilon = 1e-8 # AdamOptimizer epsilon
dropout_rate = 0.2
 
# Momentum Optimizer will use
nesterov_momentum = 0.9
weight_decay = 1e-4
 
# Label & batch_size
class_num = 3755
batch_size = 128
 
total_epochs = 50
 
 
def conv_layer(input, filter, kernel, stride=1, layer_name="conv"):
    with tf.name_scope(layer_name):
        network = tf.layers.conv2d(inputs=input, filters=filter, kernel_size=kernel, strides=stride, padding='SAME')
        return network
 
def Global_Average_Pooling(x, stride=1):
    #It is global average pooling without tflearn
    width = np.shape(x)[1]
    height = np.shape(x)[2]
    pool_size = [width, height]
    return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride) # The stride value does not matter
    """
    return global_avg_pool(x, name='Global_avg_pooling')
    # But maybe you need to install h5py and curses or not
    """
 
 
def Batch_Normalization(x, training, scope):
    with arg_scope([batch_norm],
                   scope=scope,
                   updates_collections=None,
                   decay=0.9,
                   center=True,
                   scale=True,
                   zero_debias_moving_mean=True) :
        return tf.cond(training,
                       lambda : batch_norm(inputs=x, is_training=training, reuse=None),
                       lambda : batch_norm(inputs=x, is_training=training, reuse=True))
 
def Drop_out(x, rate, training) :
    return tf.layers.dropout(inputs=x, rate=rate, training=training)
 
def Relu(x):
    return tf.nn.relu(x)
 
def Average_pooling(x, pool_size=[2,2], stride=2, padding='VALID'):
    return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding)
 
 
def Max_Pooling(x, pool_size=[3,3], stride=2, padding='VALID'):
    return tf.layers.max_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding)
 
def Concatenation(layers) :
    return tf.concat(layers, axis=3)
 
def Linear(x) :
    return tf.layers.dense(inputs=x, units=class_num, name='linear')
 
 
 
class DenseNet():
    def __init__(self, x, nb_blocks, filters, training):
        self.nb_blocks = nb_blocks
        self.filters = filters
        self.training = training
        self.model = self.Dense_net(x)
 
 
    def bottleneck_layer(self, x, scope):
        # print(x)
        with tf.name_scope(scope):
            x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
            x = Relu(x)
            x = conv_layer(x, filter=4 * self.filters, kernel=[1,1], layer_name=scope+'_conv1')
            x = Drop_out(x, rate=dropout_rate, training=self.training)
 
            x = Batch_Normalization(x, training=self.training, scope=scope+'_batch2')
            x = Relu(x)
            x = conv_layer(x, filter=self.filters, kernel=[3,3], layer_name=scope+'_conv2')
            x = Drop_out(x, rate=dropout_rate, training=self.training)
 
            # print(x)
 
            return x
 
    def transition_layer(self, x, scope):
        with tf.name_scope(scope):
            x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
            x = Relu(x)
            x = conv_layer(x, filter=self.filters, kernel=[1,1], layer_name=scope+'_conv1')
            x = Drop_out(x, rate=dropout_rate, training=self.training)
            x = Average_pooling(x, pool_size=[2,2], stride=2)
 
            return x
 
    def dense_block(self, input_x, nb_layers, layer_name):
        with tf.name_scope(layer_name):
            layers_concat = list()
            layers_concat.append(input_x)
 
            x = self.bottleneck_layer(input_x, scope=layer_name + '_bottleN_' + str(0))
 
            layers_concat.append(x)
 
            for i in range(nb_layers - 1):
                x = Concatenation(layers_concat)
                x = self.bottleneck_layer(x, scope=layer_name + '_bottleN_' + str(i + 1))
                layers_concat.append(x)
 
            x = Concatenation(layers_concat)
 
            return x
 
    def Dense_net(self, input_x):
        x = conv_layer(input_x, filter=2 * self.filters, kernel=[7,7], stride=2, layer_name='conv0')
        x = Max_Pooling(x, pool_size=[3,3], stride=2)
 
 
 
        for i in range(self.nb_blocks) :
            # 6 -> 12 -> 48
            x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i))
            x = self.transition_layer(x, scope='trans_'+str(i))
 
 
        """
        x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1')
        x = self.transition_layer(x, scope='trans_1')
 
        x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2')
        x = self.transition_layer(x, scope='trans_2')
 
        x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3')
        x = self.transition_layer(x, scope='trans_3')
        """
 
        x = self.dense_block(input_x=x, nb_layers=32, layer_name='dense_final')
 
        # 100 Layer
        x = Batch_Normalization(x, training=self.training, scope='linear_batch')
        x = Relu(x)
        x = Global_Average_Pooling(x)
        x = flatten(x)
        x = Linear(x)
 
 
        # x = tf.reshape(x, [-1, 10])
        return x
 
   
def build_graph(top_k):
    # with tf.device('/cpu:0'):
    # keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')
    images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='image_batch')
    # label = tf.placeholder(tf.float32, shape=[None, 10])
    labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')
    training_flag = tf.placeholder(tf.bool)
    logits = DenseNet(x=images, nb_blocks=nb_block, filters=growth_k, training=training_flag).model
    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
    # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits))
 
    """
    l2_loss = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()])
    optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=nesterov_momentum, use_nesterov=True)
    train = optimizer.minimize(cost + l2_loss * weight_decay)
    In paper, use MomentumOptimizer
    init_learning_rate = 0.1
    but, I'll use AdamOptimizer
    """
 
    global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
    rate = tf.train.exponential_decay(2e-4, global_step, decay_steps=2000, decay_rate=0.97, staircase=True)
    optimizer = tf.train.AdamOptimizer(learning_rate=rate, epsilon=epsilon)
    train_op = optimizer.minimize(loss, global_step=global_step)
 
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32))
 
    probabilities = logits
    tf.summary.scalar('loss', loss)
    tf.summary.scalar('accuracy', accuracy)
    merged_summary_op = tf.summary.merge_all()
    predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)
    accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32))
 
    return {'images': images,
            'labels': labels,
            'training_flag': training_flag,
            'top_k': top_k,
            'global_step': global_step,
            'train_op': train_op,
            'loss': loss,
            'accuracy': accuracy,
            'accuracy_top_k': accuracy_in_top_k,
            'merged_summary_op': merged_summary_op,
            'predicted_distribution': probabilities,
            'predicted_index_top_k': predicted_index_top_k,
            'predicted_val_top_k': predicted_val_top_k}
 
logger = logging.getLogger('Training a chinese write char recognition')
logger.setLevel(logging.INFO)
# formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
logger.addHandler(ch)
  
run_mode = "train"
charset_size = class_num
max_steps = 122002
save_steps = 1000
cur_test_acc = 0
   
"""
# for online 3755 words training
checkpoint_dir = '/aiml/dfs/checkpoint_888/'
train_data_dir = '/aiml/data/train/'
test_data_dir = '/aiml/data/test/'
log_dir = '/aiml/dfs/'
"""
  
  
checkpoint_dir = './checkpoint_densenet/'
train_data_dir = './data/train/'
test_data_dir = './data/test/'
log_dir = './'
  
  
tf.app.flags.DEFINE_string('mode', run_mode, 'Running mode. One of {"train", "valid", "test"}')
tf.app.flags.DEFINE_boolean('random_flip_up_down', True, "Whether to random flip up down")
tf.app.flags.DEFINE_boolean('random_brightness', True, "whether to adjust brightness")
tf.app.flags.DEFINE_boolean('random_contrast', True, "whether to random constrast")
   
tf.app.flags.DEFINE_integer('charset_size', charset_size, "Choose the first `charset_size` character to conduct our experiment.")
tf.app.flags.DEFINE_integer('image_size', 64, "Needs to provide same value as in training.")
tf.app.flags.DEFINE_boolean('gray', True, "whether to change the rbg to gray")
tf.app.flags.DEFINE_integer('max_steps', max_steps, 'the max training steps ')
tf.app.flags.DEFINE_integer('eval_steps', 50, "the step num to eval")
tf.app.flags.DEFINE_integer('save_steps', save_steps, "the steps to save")
   
tf.app.flags.DEFINE_string('checkpoint_dir', checkpoint_dir, 'the checkpoint dir')
tf.app.flags.DEFINE_string('train_data_dir', train_data_dir, 'the train dataset dir')
tf.app.flags.DEFINE_string('test_data_dir', test_data_dir, 'the test dataset dir')
tf.app.flags.DEFINE_string('log_dir', log_dir, 'the logging dir')
   
##############################
# resume training
tf.app.flags.DEFINE_boolean('restore', True, 'whether to restore from checkpoint')
##############################
  
tf.app.flags.DEFINE_boolean('epoch', 10, 'Number of epoches')
tf.app.flags.DEFINE_boolean('batch_size', 128, 'Validation batch size')
FLAGS = tf.app.flags.FLAGS
   
   
class DataIterator:
    def __init__(self, data_dir):
        # Set FLAGS.charset_size to a small value if available computation power is limited.
        truncate_path = data_dir + ('%05d' % FLAGS.charset_size)
        print(truncate_path)
        self.image_names = []
        for root, sub_folder, file_list in os.walk(data_dir):
            if root < truncate_path:
                self.image_names += [os.path.join(root, file_path) for file_path in file_list]
        random.shuffle(self.image_names)
        self.labels = [int(file_name[len(data_dir):].split(os.sep)[0]) for file_name in self.image_names]
   
    @property
    def size(self):
        return len(self.labels)
   
    @staticmethod
    def data_augmentation(images):
        if FLAGS.random_flip_up_down:
            # images = tf.image.random_flip_up_down(images)
            images = tf.contrib.image.rotate(images, random.randint(0, 15) * math.pi / 180, interpolation='BILINEAR')
        if FLAGS.random_brightness:
            images = tf.image.random_brightness(images, max_delta=0.3)
        if FLAGS.random_contrast:
            images = tf.image.random_contrast(images, 0.8, 1.2)
        return images
   
    def input_pipeline(self, batch_size, num_epochs=None, aug=False):
        images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)
        labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)
        input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs)
   
        labels = input_queue[1]
        images_content = tf.read_file(input_queue[0])
        images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)
        if aug:
            images = self.data_augmentation(images)
        new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32)
        images = tf.image.resize_images(images, new_size)
        image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,
                                                          min_after_dequeue=10000)
        return image_batch, label_batch
   
   
def train():
    print('Begin training')
    train_feeder = DataIterator(FLAGS.train_data_dir)
    test_feeder = DataIterator(FLAGS.test_data_dir)
    with tf.Session() as sess:
        train_images, train_labels = train_feeder.input_pipeline(batch_size=FLAGS.batch_size, aug=True)
        test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size)
        graph = build_graph(top_k=1)
        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        saver = tf.train.Saver()
   
        train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
        test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val')
        start_step = 0
        if FLAGS.restore:
            ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
            if ckpt:
                saver.restore(sess, ckpt)
                print("restore from the checkpoint {0}".format(ckpt))
                start_step += int(ckpt.split('-')[-1])
   
        logger.info(':::Training Start:::')
        try:
            while not coord.should_stop():
                start_time = time.time()
                train_images_batch, train_labels_batch = sess.run([train_images, train_labels])
                feed_dict = {graph['images']: train_images_batch,
                             graph['labels']: train_labels_batch,
                             graph['training_flag']: True}
                _, loss_val, train_summary, step = sess.run(
                    [graph['train_op'], graph['loss'], graph['merged_summary_op'], graph['global_step']],
                    feed_dict=feed_dict)
                train_writer.add_summary(train_summary, step)
                end_time = time.time()
                logger.info("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val))
                if step > FLAGS.max_steps:
                    break
                accuracy_test = 0
                if step % FLAGS.eval_steps == 1:
                    test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
                    feed_dict = {graph['images']: test_images_batch,
                                 graph['labels']: test_labels_batch,
                                 graph['training_flag']: False}
                    accuracy_test, test_summary = sess.run(
                        [graph['accuracy'], graph['merged_summary_op']],
                        feed_dict=feed_dict)
                    test_writer.add_summary(test_summary, step)
                    logger.info('===============Eval a batch=======================')
                    logger.info('the step {0} test accuracy: {1}'
                                .format(step, accuracy_test))
                    logger.info('===============Eval a batch=======================')
                if step % FLAGS.save_steps == 1:
                    logger.info('Save the ckpt of {0}'.format(step))
                    saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'),
                               global_step=graph['global_step'])
                global cur_test_acc
                cur_test_acc = accuracy_test
        except tf.errors.OutOfRangeError:
            logger.info('==================Train Finished================')
            saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'), global_step=graph['global_step'])
        finally:
            coord.request_stop()
        coord.join(threads)
   
   
def validation():
    print('validation')
    test_feeder = DataIterator(FLAGS.test_data_dir)
   
    final_predict_val = []
    final_predict_index = []
    groundtruth = []
   
    with tf.Session() as sess:
        test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size, num_epochs=1)
        graph = build_graph(top_k=3)
   
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())  # initialize test_feeder's inside state
   
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
   
        saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
        if ckpt:
            saver.restore(sess, ckpt)
            print("restore from the checkpoint {0}".format(ckpt))
   
        print(':::Start validation:::')
        try:
            i = 0
            acc_top_1, acc_top_k = 0.0, 0.0
            while not coord.should_stop():
                i += 1
                start_time = time.time()
                test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
                feed_dict = {graph['images']: test_images_batch,
                             graph['labels']: test_labels_batch,
                             graph['training_flag']: False}
                batch_labels, probs, indices, acc_1, acc_k = sess.run([graph['labels'],
                                                                       graph['predicted_val_top_k'],
                                                                       graph['predicted_index_top_k'],
                                                                       graph['accuracy'],
                                                                       graph['accuracy_top_k']], feed_dict=feed_dict)
                final_predict_val += probs.tolist()
                final_predict_index += indices.tolist()
                groundtruth += batch_labels.tolist()
                acc_top_1 += acc_1
                acc_top_k += acc_k
                end_time = time.time()
                logger.info("the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)"
                            .format(i, end_time - start_time, acc_1, acc_k))
   
        except tf.errors.OutOfRangeError:
            logger.info('==================Validation Finished================')
            acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size
            acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size
            logger.info('top 1 accuracy {0} top k accuracy {1}'.format(acc_top_1, acc_top_k))
        finally:
            coord.request_stop()
        coord.join(threads)
    return {'prob': final_predict_val, 'indices': final_predict_index, 'groundtruth': groundtruth}
   
   
def inference(image):
    print('inference')
    temp_image = Image.open(image).convert('L')
    temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS)
    temp_image = np.asarray(temp_image) / 255.0
    temp_image = temp_image.reshape([-1, 64, 64, 1])
    with tf.Session() as sess:
        logger.info('========start inference============')
        # images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1])
        # Pass a shadow label 0. This label will not affect the computation graph.
        graph = build_graph(top_k=3)
        saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
        if ckpt:
            saver.restore(sess, ckpt)
        predict_val, predict_index = sess.run([graph['predicted_val_top_k'], graph['predicted_index_top_k']],
                                              feed_dict={graph['images']: temp_image, graph['training_flag']: False})
    return predict_val, predict_index
   
   
def main(_):
    print(FLAGS.mode)
    if FLAGS.mode == "train":
        train()
    elif FLAGS.mode == 'validation':
        dct = validation()
        result_file = 'result.dict'
        logger.info('Write result into {0}'.format(result_file))
        with open(result_file, 'wb') as f:
            pickle.dump(dct, f)
        logger.info('Write file ends')
    elif FLAGS.mode == 'inference':
        image_path = './data/00098/102544.png'
        final_predict_val, final_predict_index = inference(image_path)
        logger.info('the result info label {0} predict index {1} predict_val {2}'.format(190, final_predict_index,
                                                                                         final_predict_val))
   
if __name__ == "__main__":
    tf.app.run()

 

densenet模型参考:https://github.com/taki0112/Densenet-Tensorflow

 

效果:

===============Eval a batch=======================
the step 34001.0 test accuracy: 0.765625
===============Eval a batch=======================

 

 

Compare Structure (CNN, ResNet, DenseNet)

compare

 

posted @   bonelee  阅读(1624)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-05-15 GoLang笔记-数组和切片,本质是就是长度不可变的可变的区别
2017-05-15 golang函数——可以为类型(包括内置数据类型)定义函数,类似类方法,同时支持多返回值
2017-05-15 Hadoop之父Doug Cutting:Lucene到Hadoop的开源之路
2017-05-15 ES mapping可以修改include_in_all,也可以修改index_options,norm,但是无法修改_all属性!
点击右上角即可分享
微信分享提示