densenet tensorflow 中文汉字手写识别
densenet 中文汉字手写识别,代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | import tensorflow as tf import os import random import math import tensorflow.contrib.slim as slim import time import logging import numpy as np import pickle from PIL import Image import tensorflow as tf #from tflearn.layers.conv import global_avg_pool from tensorflow.contrib.layers import batch_norm, flatten from tensorflow.contrib.framework import arg_scope import numpy as np # Hyperparameter growth_k = 12 nb_block = 2 # how many (dense block + Transition Layer) ? init_learning_rate = 1e - 4 epsilon = 1e - 8 # AdamOptimizer epsilon dropout_rate = 0.2 # Momentum Optimizer will use nesterov_momentum = 0.9 weight_decay = 1e - 4 # Label & batch_size class_num = 3755 batch_size = 128 total_epochs = 50 def conv_layer( input , filter , kernel, stride = 1 , layer_name = "conv" ): with tf.name_scope(layer_name): network = tf.layers.conv2d(inputs = input , filters = filter , kernel_size = kernel, strides = stride, padding = 'SAME' ) return network def Global_Average_Pooling(x, stride = 1 ): #It is global average pooling without tflearn width = np.shape(x)[ 1 ] height = np.shape(x)[ 2 ] pool_size = [width, height] return tf.layers.average_pooling2d(inputs = x, pool_size = pool_size, strides = stride) # The stride value does not matter """ return global_avg_pool(x, name='Global_avg_pooling') # But maybe you need to install h5py and curses or not """ def Batch_Normalization(x, training, scope): with arg_scope([batch_norm], scope = scope, updates_collections = None , decay = 0.9 , center = True , scale = True , zero_debias_moving_mean = True ) : return tf.cond(training, lambda : batch_norm(inputs = x, is_training = training, reuse = None ), lambda : batch_norm(inputs = x, is_training = training, reuse = True )) def Drop_out(x, rate, training) : return tf.layers.dropout(inputs = x, rate = rate, training = training) def Relu(x): return tf.nn.relu(x) def Average_pooling(x, pool_size = [ 2 , 2 ], stride = 2 , padding = 'VALID' ): return tf.layers.average_pooling2d(inputs = x, pool_size = pool_size, strides = stride, padding = padding) def Max_Pooling(x, pool_size = [ 3 , 3 ], stride = 2 , padding = 'VALID' ): return tf.layers.max_pooling2d(inputs = x, pool_size = pool_size, strides = stride, padding = padding) def Concatenation(layers) : return tf.concat(layers, axis = 3 ) def Linear(x) : return tf.layers.dense(inputs = x, units = class_num, name = 'linear' ) class DenseNet(): def __init__( self , x, nb_blocks, filters, training): self .nb_blocks = nb_blocks self .filters = filters self .training = training self .model = self .Dense_net(x) def bottleneck_layer( self , x, scope): # print(x) with tf.name_scope(scope): x = Batch_Normalization(x, training = self .training, scope = scope + '_batch1' ) x = Relu(x) x = conv_layer(x, filter = 4 * self .filters, kernel = [ 1 , 1 ], layer_name = scope + '_conv1' ) x = Drop_out(x, rate = dropout_rate, training = self .training) x = Batch_Normalization(x, training = self .training, scope = scope + '_batch2' ) x = Relu(x) x = conv_layer(x, filter = self .filters, kernel = [ 3 , 3 ], layer_name = scope + '_conv2' ) x = Drop_out(x, rate = dropout_rate, training = self .training) # print(x) return x def transition_layer( self , x, scope): with tf.name_scope(scope): x = Batch_Normalization(x, training = self .training, scope = scope + '_batch1' ) x = Relu(x) x = conv_layer(x, filter = self .filters, kernel = [ 1 , 1 ], layer_name = scope + '_conv1' ) x = Drop_out(x, rate = dropout_rate, training = self .training) x = Average_pooling(x, pool_size = [ 2 , 2 ], stride = 2 ) return x def dense_block( self , input_x, nb_layers, layer_name): with tf.name_scope(layer_name): layers_concat = list () layers_concat.append(input_x) x = self .bottleneck_layer(input_x, scope = layer_name + '_bottleN_' + str ( 0 )) layers_concat.append(x) for i in range (nb_layers - 1 ): x = Concatenation(layers_concat) x = self .bottleneck_layer(x, scope = layer_name + '_bottleN_' + str (i + 1 )) layers_concat.append(x) x = Concatenation(layers_concat) return x def Dense_net( self , input_x): x = conv_layer(input_x, filter = 2 * self .filters, kernel = [ 7 , 7 ], stride = 2 , layer_name = 'conv0' ) x = Max_Pooling(x, pool_size = [ 3 , 3 ], stride = 2 ) for i in range ( self .nb_blocks) : # 6 -> 12 -> 48 x = self .dense_block(input_x = x, nb_layers = 4 , layer_name = 'dense_' + str (i)) x = self .transition_layer(x, scope = 'trans_' + str (i)) """ x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1') x = self.transition_layer(x, scope='trans_1') x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2') x = self.transition_layer(x, scope='trans_2') x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3') x = self.transition_layer(x, scope='trans_3') """ x = self .dense_block(input_x = x, nb_layers = 32 , layer_name = 'dense_final' ) # 100 Layer x = Batch_Normalization(x, training = self .training, scope = 'linear_batch' ) x = Relu(x) x = Global_Average_Pooling(x) x = flatten(x) x = Linear(x) # x = tf.reshape(x, [-1, 10]) return x def build_graph(top_k): # with tf.device('/cpu:0'): # keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob') images = tf.placeholder(dtype = tf.float32, shape = [ None , 64 , 64 , 1 ], name = 'image_batch' ) # label = tf.placeholder(tf.float32, shape=[None, 10]) labels = tf.placeholder(dtype = tf.int64, shape = [ None ], name = 'label_batch' ) training_flag = tf.placeholder(tf. bool ) logits = DenseNet(x = images, nb_blocks = nb_block, filters = growth_k, training = training_flag).model loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels)) # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) """ l2_loss = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()]) optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=nesterov_momentum, use_nesterov=True) train = optimizer.minimize(cost + l2_loss * weight_decay) In paper, use MomentumOptimizer init_learning_rate = 0.1 but, I'll use AdamOptimizer """ global_step = tf.get_variable( "step" , [], initializer = tf.constant_initializer( 0.0 ), trainable = False ) rate = tf.train.exponential_decay( 2e - 4 , global_step, decay_steps = 2000 , decay_rate = 0.97 , staircase = True ) optimizer = tf.train.AdamOptimizer(learning_rate = rate, epsilon = epsilon) train_op = optimizer.minimize(loss, global_step = global_step) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1 ), labels), tf.float32)) probabilities = logits tf.summary.scalar( 'loss' , loss) tf.summary.scalar( 'accuracy' , accuracy) merged_summary_op = tf.summary.merge_all() predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k = top_k) accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32)) return { 'images' : images, 'labels' : labels, 'training_flag' : training_flag, 'top_k' : top_k, 'global_step' : global_step, 'train_op' : train_op, 'loss' : loss, 'accuracy' : accuracy, 'accuracy_top_k' : accuracy_in_top_k, 'merged_summary_op' : merged_summary_op, 'predicted_distribution' : probabilities, 'predicted_index_top_k' : predicted_index_top_k, 'predicted_val_top_k' : predicted_val_top_k} logger = logging.getLogger( 'Training a chinese write char recognition' ) logger.setLevel(logging.INFO) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch = logging.StreamHandler() ch.setLevel(logging.INFO) logger.addHandler(ch) run_mode = "train" charset_size = class_num max_steps = 122002 save_steps = 1000 cur_test_acc = 0 """ # for online 3755 words training checkpoint_dir = '/aiml/dfs/checkpoint_888/' train_data_dir = '/aiml/data/train/' test_data_dir = '/aiml/data/test/' log_dir = '/aiml/dfs/' """ checkpoint_dir = './checkpoint_densenet/' train_data_dir = './data/train/' test_data_dir = './data/test/' log_dir = './' tf.app.flags.DEFINE_string( 'mode' , run_mode, 'Running mode. One of {"train", "valid", "test"}' ) tf.app.flags.DEFINE_boolean( 'random_flip_up_down' , True , "Whether to random flip up down" ) tf.app.flags.DEFINE_boolean( 'random_brightness' , True , "whether to adjust brightness" ) tf.app.flags.DEFINE_boolean( 'random_contrast' , True , "whether to random constrast" ) tf.app.flags.DEFINE_integer( 'charset_size' , charset_size, "Choose the first `charset_size` character to conduct our experiment." ) tf.app.flags.DEFINE_integer( 'image_size' , 64 , "Needs to provide same value as in training." ) tf.app.flags.DEFINE_boolean( 'gray' , True , "whether to change the rbg to gray" ) tf.app.flags.DEFINE_integer( 'max_steps' , max_steps, 'the max training steps ' ) tf.app.flags.DEFINE_integer( 'eval_steps' , 50 , "the step num to eval" ) tf.app.flags.DEFINE_integer( 'save_steps' , save_steps, "the steps to save" ) tf.app.flags.DEFINE_string( 'checkpoint_dir' , checkpoint_dir, 'the checkpoint dir' ) tf.app.flags.DEFINE_string( 'train_data_dir' , train_data_dir, 'the train dataset dir' ) tf.app.flags.DEFINE_string( 'test_data_dir' , test_data_dir, 'the test dataset dir' ) tf.app.flags.DEFINE_string( 'log_dir' , log_dir, 'the logging dir' ) ############################## # resume training tf.app.flags.DEFINE_boolean( 'restore' , True , 'whether to restore from checkpoint' ) ############################## tf.app.flags.DEFINE_boolean( 'epoch' , 10 , 'Number of epoches' ) tf.app.flags.DEFINE_boolean( 'batch_size' , 128 , 'Validation batch size' ) FLAGS = tf.app.flags.FLAGS class DataIterator: def __init__( self , data_dir): # Set FLAGS.charset_size to a small value if available computation power is limited. truncate_path = data_dir + ( '%05d' % FLAGS.charset_size) print (truncate_path) self .image_names = [] for root, sub_folder, file_list in os.walk(data_dir): if root < truncate_path: self .image_names + = [os.path.join(root, file_path) for file_path in file_list] random.shuffle( self .image_names) self .labels = [ int (file_name[ len (data_dir):].split(os.sep)[ 0 ]) for file_name in self .image_names] @property def size( self ): return len ( self .labels) @staticmethod def data_augmentation(images): if FLAGS.random_flip_up_down: # images = tf.image.random_flip_up_down(images) images = tf.contrib.image.rotate(images, random.randint( 0 , 15 ) * math.pi / 180 , interpolation = 'BILINEAR' ) if FLAGS.random_brightness: images = tf.image.random_brightness(images, max_delta = 0.3 ) if FLAGS.random_contrast: images = tf.image.random_contrast(images, 0.8 , 1.2 ) return images def input_pipeline( self , batch_size, num_epochs = None , aug = False ): images_tensor = tf.convert_to_tensor( self .image_names, dtype = tf.string) labels_tensor = tf.convert_to_tensor( self .labels, dtype = tf.int64) input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs = num_epochs) labels = input_queue[ 1 ] images_content = tf.read_file(input_queue[ 0 ]) images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels = 1 ), tf.float32) if aug: images = self .data_augmentation(images) new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype = tf.int32) images = tf.image.resize_images(images, new_size) image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size = batch_size, capacity = 50000 , min_after_dequeue = 10000 ) return image_batch, label_batch def train(): print ( 'Begin training' ) train_feeder = DataIterator(FLAGS.train_data_dir) test_feeder = DataIterator(FLAGS.test_data_dir) with tf.Session() as sess: train_images, train_labels = train_feeder.input_pipeline(batch_size = FLAGS.batch_size, aug = True ) test_images, test_labels = test_feeder.input_pipeline(batch_size = FLAGS.batch_size) graph = build_graph(top_k = 1 ) sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess, coord = coord) saver = tf.train.Saver() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train' , sess.graph) test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val' ) start_step = 0 if FLAGS.restore: ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) print ( "restore from the checkpoint {0}" . format (ckpt)) start_step + = int (ckpt.split( '-' )[ - 1 ]) logger.info( ':::Training Start:::' ) try : while not coord.should_stop(): start_time = time.time() train_images_batch, train_labels_batch = sess.run([train_images, train_labels]) feed_dict = {graph[ 'images' ]: train_images_batch, graph[ 'labels' ]: train_labels_batch, graph[ 'training_flag' ]: True } _, loss_val, train_summary, step = sess.run( [graph[ 'train_op' ], graph[ 'loss' ], graph[ 'merged_summary_op' ], graph[ 'global_step' ]], feed_dict = feed_dict) train_writer.add_summary(train_summary, step) end_time = time.time() logger.info( "the step {0} takes {1} loss {2}" . format (step, end_time - start_time, loss_val)) if step > FLAGS.max_steps: break accuracy_test = 0 if step % FLAGS.eval_steps = = 1 : test_images_batch, test_labels_batch = sess.run([test_images, test_labels]) feed_dict = {graph[ 'images' ]: test_images_batch, graph[ 'labels' ]: test_labels_batch, graph[ 'training_flag' ]: False } accuracy_test, test_summary = sess.run( [graph[ 'accuracy' ], graph[ 'merged_summary_op' ]], feed_dict = feed_dict) test_writer.add_summary(test_summary, step) logger.info( '===============Eval a batch=======================' ) logger.info( 'the step {0} test accuracy: {1}' . format (step, accuracy_test)) logger.info( '===============Eval a batch=======================' ) if step % FLAGS.save_steps = = 1 : logger.info( 'Save the ckpt of {0}' . format (step)) saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model' ), global_step = graph[ 'global_step' ]) global cur_test_acc cur_test_acc = accuracy_test except tf.errors.OutOfRangeError: logger.info( '==================Train Finished================' ) saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model' ), global_step = graph[ 'global_step' ]) finally : coord.request_stop() coord.join(threads) def validation(): print ( 'validation' ) test_feeder = DataIterator(FLAGS.test_data_dir) final_predict_val = [] final_predict_index = [] groundtruth = [] with tf.Session() as sess: test_images, test_labels = test_feeder.input_pipeline(batch_size = FLAGS.batch_size, num_epochs = 1 ) graph = build_graph(top_k = 3 ) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # initialize test_feeder's inside state coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess, coord = coord) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) print ( "restore from the checkpoint {0}" . format (ckpt)) print ( ':::Start validation:::' ) try : i = 0 acc_top_1, acc_top_k = 0.0 , 0.0 while not coord.should_stop(): i + = 1 start_time = time.time() test_images_batch, test_labels_batch = sess.run([test_images, test_labels]) feed_dict = {graph[ 'images' ]: test_images_batch, graph[ 'labels' ]: test_labels_batch, graph[ 'training_flag' ]: False } batch_labels, probs, indices, acc_1, acc_k = sess.run([graph[ 'labels' ], graph[ 'predicted_val_top_k' ], graph[ 'predicted_index_top_k' ], graph[ 'accuracy' ], graph[ 'accuracy_top_k' ]], feed_dict = feed_dict) final_predict_val + = probs.tolist() final_predict_index + = indices.tolist() groundtruth + = batch_labels.tolist() acc_top_1 + = acc_1 acc_top_k + = acc_k end_time = time.time() logger.info( "the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)" . format (i, end_time - start_time, acc_1, acc_k)) except tf.errors.OutOfRangeError: logger.info( '==================Validation Finished================' ) acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size logger.info( 'top 1 accuracy {0} top k accuracy {1}' . format (acc_top_1, acc_top_k)) finally : coord.request_stop() coord.join(threads) return { 'prob' : final_predict_val, 'indices' : final_predict_index, 'groundtruth' : groundtruth} def inference(image): print ( 'inference' ) temp_image = Image. open (image).convert( 'L' ) temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS) temp_image = np.asarray(temp_image) / 255.0 temp_image = temp_image.reshape([ - 1 , 64 , 64 , 1 ]) with tf.Session() as sess: logger.info( '========start inference============' ) # images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1]) # Pass a shadow label 0. This label will not affect the computation graph. graph = build_graph(top_k = 3 ) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) predict_val, predict_index = sess.run([graph[ 'predicted_val_top_k' ], graph[ 'predicted_index_top_k' ]], feed_dict = {graph[ 'images' ]: temp_image, graph[ 'training_flag' ]: False }) return predict_val, predict_index def main(_): print (FLAGS.mode) if FLAGS.mode = = "train" : train() elif FLAGS.mode = = 'validation' : dct = validation() result_file = 'result.dict' logger.info( 'Write result into {0}' . format (result_file)) with open (result_file, 'wb' ) as f: pickle.dump(dct, f) logger.info( 'Write file ends' ) elif FLAGS.mode = = 'inference' : image_path = './data/00098/102544.png' final_predict_val, final_predict_index = inference(image_path) logger.info( 'the result info label {0} predict index {1} predict_val {2}' . format ( 190 , final_predict_index, final_predict_val)) if __name__ = = "__main__" : tf.app.run() |
densenet模型参考:https://github.com/taki0112/Densenet-Tensorflow
效果:
===============Eval a batch=======================
the step 34001.0 test accuracy: 0.765625
===============Eval a batch=======================
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-15 GoLang笔记-数组和切片,本质是就是长度不可变的可变的区别
2017-05-15 golang函数——可以为类型(包括内置数据类型)定义函数,类似类方法,同时支持多返回值
2017-05-15 Hadoop之父Doug Cutting:Lucene到Hadoop的开源之路
2017-05-15 ES mapping可以修改include_in_all,也可以修改index_options,norm,但是无法修改_all属性!