tensorflow kmeans 聚类
iris:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | # -*- coding: utf-8 -*- # K-means with TensorFlow #---------------------------------- # # This script shows how to do k-means with TensorFlow import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from sklearn import datasets from scipy.spatial import cKDTree from sklearn.decomposition import PCA from sklearn.preprocessing import scale from tensorflow.python.framework import ops ops.reset_default_graph() sess = tf.Session() iris = datasets.load_iris() num_pts = len (iris.data) num_feats = len (iris.data[ 0 ]) # Set k-means parameters # There are 3 types of iris flowers, see if we can predict them k = 3 generations = 25 data_points = tf.Variable(iris.data) cluster_labels = tf.Variable(tf.zeros([num_pts], dtype = tf.int64)) # Randomly choose starting points rand_starts = np.array([iris.data[np.random.choice( len (iris.data))] for _ in range (k)]) centroids = tf.Variable(rand_starts) # In order to calculate the distance between every data point and every centroid, we # repeat the centroids into a (num_points) by k matrix. centroid_matrix = tf.reshape(tf.tile(centroids, [num_pts, 1 ]), [num_pts, k, num_feats]) # Then we reshape the data points into k (3) repeats point_matrix = tf.reshape(tf.tile(data_points, [ 1 , k]), [num_pts, k, num_feats]) distances = tf.reduce_sum(tf.square(point_matrix - centroid_matrix), axis = 2 ) #Find the group it belongs to with tf.argmin() centroid_group = tf.argmin(distances, 1 ) # Find the group average def data_group_avg(group_ids, data): # Sum each group sum_total = tf.unsorted_segment_sum(data, group_ids, 3 ) # Count each group num_total = tf.unsorted_segment_sum(tf.ones_like(data), group_ids, 3 ) # Calculate average avg_by_group = sum_total / num_total return (avg_by_group) means = data_group_avg(centroid_group, data_points) update = tf.group(centroids.assign(means), cluster_labels.assign(centroid_group)) init = tf.global_variables_initializer() sess.run(init) for i in range (generations): print ( 'Calculating gen {}, out of {}.' . format (i, generations)) _, centroid_group_count = sess.run([update, centroid_group]) group_count = [] for ix in range (k): group_count.append(np. sum (centroid_group_count = = ix)) print ( 'Group counts: {}' . format (group_count)) [centers, assignments] = sess.run([centroids, cluster_labels]) # Find which group assignments correspond to which group labels # First, need a most common element function def most_common(my_list): return ( max ( set (my_list), key = my_list.count)) label0 = most_common( list (assignments[ 0 : 50 ])) label1 = most_common( list (assignments[ 50 : 100 ])) label2 = most_common( list (assignments[ 100 : 150 ])) group0_count = np. sum (assignments[ 0 : 50 ] = = label0) group1_count = np. sum (assignments[ 50 : 100 ] = = label1) group2_count = np. sum (assignments[ 100 : 150 ] = = label2) accuracy = (group0_count + group1_count + group2_count) / 150. print ( 'Accuracy: {:.2}' . format (accuracy)) # Also plot the output # First use PCA to transform the 4-dimensional data into 2-dimensions pca_model = PCA(n_components = 2 ) reduced_data = pca_model.fit_transform(iris.data) # Transform centers reduced_centers = pca_model.transform(centers) # Step size of mesh for plotting h = . 02 # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0 ]. min () - 1 , reduced_data[:, 0 ]. max () + 1 y_min, y_max = reduced_data[:, 1 ]. min () - 1 , reduced_data[:, 1 ]. max () + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Get k-means classifications for the grid points xx_pt = list (xx.ravel()) yy_pt = list (yy.ravel()) xy_pts = np.array([[x,y] for x,y in zip (xx_pt, yy_pt)]) mytree = cKDTree(reduced_centers) dist, indexes = mytree.query(xy_pts) # Put the result into a color plot indexes = indexes.reshape(xx.shape) plt.figure( 1 ) plt.clf() plt.imshow(indexes, interpolation = 'nearest' , extent = (xx. min (), xx. max (), yy. min (), yy. max ()), cmap = plt.cm.Paired, aspect = 'auto' , origin = 'lower' ) # Plot each of the true iris data groups symbols = [ 'o' , '^' , 'D' ] label_name = [ 'Setosa' , 'Versicolour' , 'Virginica' ] for i in range ( 3 ): temp_group = reduced_data[(i * 50 ):( 50 ) * (i + 1 )] plt.plot(temp_group[:, 0 ], temp_group[:, 1 ], symbols[i], markersize = 10 , label = label_name[i]) # Plot the centroids as a white X plt.scatter(reduced_centers[:, 0 ], reduced_centers[:, 1 ], marker = 'x' , s = 169 , linewidths = 3 , color = 'w' , zorder = 10 ) plt.title( 'K-means clustering on Iris Dataset\n' 'Centroids are marked with white cross' ) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc = 'lower right' ) plt.show() |
标签:
tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-08 elasticsearch best_fields most_fields cross_fields从内在实现看区别——本质就是前两者是以field为中心,后者是词条为中心