tensorflow knn mnist
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | # MNIST Digit Prediction with k-Nearest Neighbors #----------------------------------------------- # # This script will load the MNIST data, and split # it into test/train and perform prediction with # nearest neighbors # # For each test integer, we will return the # closest image/integer. # # Integer images are represented as 28x8 matrices # of floating point numbers import random import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from PIL import Image from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python.framework import ops ops.reset_default_graph() # Create graph sess = tf.Session() # Load the data mnist = input_data.read_data_sets( "MNIST_data/" , one_hot = True ) # Random sample np.random.seed( 13 ) # set seed for reproducibility train_size = 1000 test_size = 102 rand_train_indices = np.random.choice( len (mnist.train.images), train_size, replace = False ) rand_test_indices = np.random.choice( len (mnist.test.images), test_size, replace = False ) x_vals_train = mnist.train.images[rand_train_indices] x_vals_test = mnist.test.images[rand_test_indices] y_vals_train = mnist.train.labels[rand_train_indices] y_vals_test = mnist.test.labels[rand_test_indices] # Declare k-value and batch size k = 4 batch_size = 6 # Placeholders x_data_train = tf.placeholder(shape = [ None , 784 ], dtype = tf.float32) x_data_test = tf.placeholder(shape = [ None , 784 ], dtype = tf.float32) y_target_train = tf.placeholder(shape = [ None , 10 ], dtype = tf.float32) y_target_test = tf.placeholder(shape = [ None , 10 ], dtype = tf.float32) # Declare distance metric # L1 distance = tf.reduce_sum(tf. abs (tf.subtract(x_data_train, tf.expand_dims(x_data_test, 1 ))), axis = 2 ) # L2 #distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), reduction_indices=1)) # Predict: Get min distance index (Nearest neighbor) top_k_xvals, top_k_indices = tf.nn.top_k(tf.negative(distance), k = k) prediction_indices = tf.gather(y_target_train, top_k_indices) # Predict the mode category count_of_predictions = tf.reduce_sum(prediction_indices, axis = 1 ) prediction = tf.argmax(count_of_predictions, axis = 1 ) # Calculate how many loops over training data num_loops = int (np.ceil( len (x_vals_test) / batch_size)) test_output = [] actual_vals = [] for i in range (num_loops): min_index = i * batch_size max_index = min ((i + 1 ) * batch_size, len (x_vals_train)) x_batch = x_vals_test[min_index:max_index] y_batch = y_vals_test[min_index:max_index] predictions = sess.run(prediction, feed_dict = {x_data_train: x_vals_train, x_data_test: x_batch, y_target_train: y_vals_train, y_target_test: y_batch}) test_output.extend(predictions) actual_vals.extend(np.argmax(y_batch, axis = 1 )) accuracy = sum ([ 1. / test_size for i in range (test_size) if test_output[i] = = actual_vals[i]]) print ( 'Accuracy on test set: ' + str (accuracy)) # Plot the last batch results: actuals = np.argmax(y_batch, axis = 1 ) Nrows = 2 Ncols = 3 for i in range ( len (actuals)): plt.subplot(Nrows, Ncols, i + 1 ) plt.imshow(np.reshape(x_batch[i], [ 28 , 28 ]), cmap = 'Greys_r' ) plt.title( 'Actual: ' + str (actuals[i]) + ' Pred: ' + str (predictions[i]), fontsize = 10 ) frame = plt.gca() frame.axes.get_xaxis().set_visible( False ) frame.axes.get_yaxis().set_visible( False ) plt.show() |
效果:
标签:
tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-08 elasticsearch best_fields most_fields cross_fields从内在实现看区别——本质就是前两者是以field为中心,后者是词条为中心