tensorflow knn mnist

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# MNIST Digit Prediction with k-Nearest Neighbors
#-----------------------------------------------
#
# This script will load the MNIST data, and split
# it into test/train and perform prediction with
# nearest neighbors
#
# For each test integer, we will return the
# closest image/integer.
#
# Integer images are represented as 28x8 matrices
# of floating point numbers
 
import random
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.framework import ops
ops.reset_default_graph()
 
# Create graph
sess = tf.Session()
 
# Load the data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
 
# Random sample
np.random.seed(13# set seed for reproducibility
train_size = 1000
test_size = 102
rand_train_indices = np.random.choice(len(mnist.train.images), train_size, replace=False)
rand_test_indices = np.random.choice(len(mnist.test.images), test_size, replace=False)
x_vals_train = mnist.train.images[rand_train_indices]
x_vals_test = mnist.test.images[rand_test_indices]
y_vals_train = mnist.train.labels[rand_train_indices]
y_vals_test = mnist.test.labels[rand_test_indices]
 
# Declare k-value and batch size
k = 4
batch_size=6
 
# Placeholders
x_data_train = tf.placeholder(shape=[None, 784], dtype=tf.float32)
x_data_test = tf.placeholder(shape=[None, 784], dtype=tf.float32)
y_target_train = tf.placeholder(shape=[None, 10], dtype=tf.float32)
y_target_test = tf.placeholder(shape=[None, 10], dtype=tf.float32)
 
# Declare distance metric
# L1
distance = tf.reduce_sum(tf.abs(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), axis=2)
 
# L2
#distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), reduction_indices=1))
 
# Predict: Get min distance index (Nearest neighbor)
top_k_xvals, top_k_indices = tf.nn.top_k(tf.negative(distance), k=k)
prediction_indices = tf.gather(y_target_train, top_k_indices)
# Predict the mode category
count_of_predictions = tf.reduce_sum(prediction_indices, axis=1)
prediction = tf.argmax(count_of_predictions, axis=1)
 
# Calculate how many loops over training data
num_loops = int(np.ceil(len(x_vals_test)/batch_size))
 
test_output = []
actual_vals = []
for i in range(num_loops):
    min_index = i*batch_size
    max_index = min((i+1)*batch_size,len(x_vals_train))
    x_batch = x_vals_test[min_index:max_index]
    y_batch = y_vals_test[min_index:max_index]
    predictions = sess.run(prediction, feed_dict={x_data_train: x_vals_train, x_data_test: x_batch,
                                         y_target_train: y_vals_train, y_target_test: y_batch})
    test_output.extend(predictions)
    actual_vals.extend(np.argmax(y_batch, axis=1))
 
accuracy = sum([1./test_size for i in range(test_size) if test_output[i]==actual_vals[i]])
print('Accuracy on test set: ' + str(accuracy))
 
# Plot the last batch results:
actuals = np.argmax(y_batch, axis=1)
 
Nrows = 2
Ncols = 3
for i in range(len(actuals)):
    plt.subplot(Nrows, Ncols, i+1)
    plt.imshow(np.reshape(x_batch[i], [28,28]), cmap='Greys_r')
    plt.title('Actual: ' + str(actuals[i]) + ' Pred: ' + str(predictions[i]),
                               fontsize=10)
    frame = plt.gca()
    frame.axes.get_xaxis().set_visible(False)
    frame.axes.get_yaxis().set_visible(False)
     
plt.show()

 效果:

posted @   bonelee  阅读(444)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-05-08 elasticsearch best_fields most_fields cross_fields从内在实现看区别——本质就是前两者是以field为中心,后者是词条为中心
点击右上角即可分享
微信分享提示