tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | # Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Width) # Y: (I. setosa, I. virginica, I. versicolor) (3 classes) # # Basic idea: introduce an extra dimension to do # one vs all classification. # # The prediction of a point will be the category with # the largest margin or distance to boundary. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # Create graph sess = tf.Session() # Load the data # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)] iris = datasets.load_iris() x_vals = np.array([[x[ 0 ], x[ 3 ]] for x in iris.data]) y_vals1 = np.array([ 1 if y = = 0 else - 1 for y in iris.target]) y_vals2 = np.array([ 1 if y = = 1 else - 1 for y in iris.target]) y_vals3 = np.array([ 1 if y = = 2 else - 1 for y in iris.target]) y_vals = np.array([y_vals1, y_vals2, y_vals3]) class1_x = [x[ 0 ] for i, x in enumerate (x_vals) if iris.target[i] = = 0 ] class1_y = [x[ 1 ] for i, x in enumerate (x_vals) if iris.target[i] = = 0 ] class2_x = [x[ 0 ] for i, x in enumerate (x_vals) if iris.target[i] = = 1 ] class2_y = [x[ 1 ] for i, x in enumerate (x_vals) if iris.target[i] = = 1 ] class3_x = [x[ 0 ] for i, x in enumerate (x_vals) if iris.target[i] = = 2 ] class3_y = [x[ 1 ] for i, x in enumerate (x_vals) if iris.target[i] = = 2 ] # Declare batch size batch_size = 50 # Initialize placeholders x_data = tf.placeholder(shape = [ None , 2 ], dtype = tf.float32) y_target = tf.placeholder(shape = [ 3 , None ], dtype = tf.float32) prediction_grid = tf.placeholder(shape = [ None , 2 ], dtype = tf.float32) # Create variables for svm b = tf.Variable(tf.random_normal(shape = [ 3 , batch_size])) # Gaussian (RBF) kernel gamma = tf.constant( - 10.0 ) dist = tf.reduce_sum(tf.square(x_data), 1 ) dist = tf.reshape(dist, [ - 1 , 1 ]) sq_dists = tf.multiply( 2. , tf.matmul(x_data, tf.transpose(x_data))) my_kernel = tf.exp(tf.multiply(gamma, tf. abs (sq_dists))) # Declare function to do reshape/batch multiplication def reshape_matmul(mat, _size): v1 = tf.expand_dims(mat, 1 ) v2 = tf.reshape(v1, [ 3 , _size, 1 ]) return tf.matmul(v2, v1) # Compute SVM Model first_term = tf.reduce_sum(b) b_vec_cross = tf.matmul(tf.transpose(b), b) y_target_cross = reshape_matmul(y_target, batch_size) second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)), [ 1 , 2 ]) loss = tf.reduce_sum(tf.negative(tf.subtract(first_term, second_term))) # Gaussian (RBF) prediction kernel rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1 ), [ - 1 , 1 ]) rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1 ), [ - 1 , 1 ]) pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply( 2. , tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB)) pred_kernel = tf.exp(tf.multiply(gamma, tf. abs (pred_sq_dist))) prediction_output = tf.matmul(tf.multiply(y_target, b), pred_kernel) prediction = tf.argmax(prediction_output - tf.expand_dims(tf.reduce_mean(prediction_output, 1 ), 1 ), 0 ) accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, tf.argmax(y_target, 0 )), tf.float32)) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer( 0.01 ) train_step = my_opt.minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop loss_vec = [] batch_accuracy = [] for i in range ( 100 ): rand_index = np.random.choice( len (x_vals), size = batch_size) rand_x = x_vals[rand_index] rand_y = y_vals[:, rand_index] sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict = {x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) acc_temp = sess.run(accuracy, feed_dict = {x_data: rand_x, y_target: rand_y, prediction_grid: rand_x}) batch_accuracy.append(acc_temp) if (i + 1 ) % 25 = = 0 : print ( 'Step #' + str (i + 1 )) print ( 'Loss = ' + str (temp_loss)) # Create a mesh to plot points in x_min, x_max = x_vals[:, 0 ]. min () - 1 , x_vals[:, 0 ]. max () + 1 y_min, y_max = x_vals[:, 1 ]. min () - 1 , x_vals[:, 1 ]. max () + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02 ), np.arange(y_min, y_max, 0.02 )) grid_points = np.c_[xx.ravel(), yy.ravel()] grid_predictions = sess.run(prediction, feed_dict = {x_data: rand_x, y_target: rand_y, prediction_grid: grid_points}) grid_predictions = grid_predictions.reshape(xx.shape) # Plot points and grid plt.contourf(xx, yy, grid_predictions, cmap = plt.cm.Paired, alpha = 0.8 ) plt.plot(class1_x, class1_y, 'ro' , label = 'I. setosa' ) plt.plot(class2_x, class2_y, 'kx' , label = 'I. versicolor' ) plt.plot(class3_x, class3_y, 'gv' , label = 'I. virginica' ) plt.title( 'Gaussian SVM Results on Iris Data' ) plt.xlabel( 'Pedal Length' ) plt.ylabel( 'Sepal Width' ) plt.legend(loc = 'lower right' ) plt.ylim([ - 0.5 , 3.0 ]) plt.xlim([ 3.5 , 8.5 ]) plt.show() # Plot batch accuracy plt.plot(batch_accuracy, 'k-' , label = 'Accuracy' ) plt.title( 'Batch Accuracy' ) plt.xlabel( 'Generation' ) plt.ylabel( 'Accuracy' ) plt.legend(loc = 'lower right' ) plt.show() # Plot loss over time plt.plot(loss_vec, 'k-' ) plt.title( 'Loss per Generation' ) plt.xlabel( 'Generation' ) plt.ylabel( 'Loss' ) plt.show() # Evaluations on new/unseen data |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-05 influx测试——单条读性能很差,大约400条/s,批量写性能很高,7万条/s,总体说来适合IOT数据批量存,根据tag查和过滤场景,按照时间顺序返回
2017-05-05 乐视云监控数据存放到influxdb中
2017-05-05 influxdb入门——和mongodb一样可以动态增加字段
2017-05-05 InfluxDB 分布式时间序列数据库环境搭建——据qcon大会2016qiniu说集群很坑且闭源了