tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
iris二分类
# Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This function shows how to use TensorFlow to # create a soft margin SVM # # We will use the iris data, specifically: # x1 = Sepal Length # x2 = Petal Width # Class 1 : I. setosa # Class -1: not I. setosa # # We know here that x and y are linearly seperable # for I. setosa classification. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # Set random seeds np.random.seed(7) tf.set_random_seed(7) # Create graph sess = tf.Session() # Load the data # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)] iris = datasets.load_iris() x_vals = np.array([[x[0], x[3]] for x in iris.data]) y_vals = np.array([1 if y == 0 else -1 for y in iris.target]) # Split data into train/test sets train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.9), replace=False) test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # Declare batch size batch_size = 135 # Initialize placeholders x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Create variables for linear regression A = tf.Variable(tf.random_normal(shape=[2, 1])) b = tf.Variable(tf.random_normal(shape=[1, 1])) # Declare model operations model_output = tf.subtract(tf.matmul(x_data, A), b) # Declare vector L2 'norm' function squared l2_norm = tf.reduce_sum(tf.square(A)) # Declare loss function # Loss = max(0, 1-pred*actual) + alpha * L2_norm(A)^2 # L2 regularization parameter, alpha alpha = tf.constant([0.01]) # Margin term in loss classification_term = tf.reduce_mean(tf.maximum(0., tf.subtract(1., tf.multiply(model_output, y_target)))) # Put terms together loss = tf.add(classification_term, tf.multiply(alpha, l2_norm)) # Declare prediction function prediction = tf.sign(model_output) accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, y_target), tf.float32)) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.01) train_step = my_opt.minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop loss_vec = [] train_accuracy = [] test_accuracy = [] for i in range(500): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = x_vals_train[rand_index] rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) train_acc_temp = sess.run(accuracy, feed_dict={ x_data: x_vals_train, y_target: np.transpose([y_vals_train])}) train_accuracy.append(train_acc_temp) test_acc_temp = sess.run(accuracy, feed_dict={ x_data: x_vals_test, y_target: np.transpose([y_vals_test])}) test_accuracy.append(test_acc_temp) if (i + 1) % 100 == 0: print('Step #{} A = {}, b = {}'.format( str(i+1), str(sess.run(A)), str(sess.run(b)) )) print('Loss = ' + str(temp_loss)) # Extract coefficients [[a1], [a2]] = sess.run(A) [[b]] = sess.run(b) slope = -a2/a1 y_intercept = b/a1 # Extract x1 and x2 vals x1_vals = [d[1] for d in x_vals] # Get best fit line best_fit = [] for i in x1_vals: best_fit.append(slope*i+y_intercept) # Separate I. setosa setosa_x = [d[1] for i, d in enumerate(x_vals) if y_vals[i] == 1] setosa_y = [d[0] for i, d in enumerate(x_vals) if y_vals[i] == 1] not_setosa_x = [d[1] for i, d in enumerate(x_vals) if y_vals[i] == -1] not_setosa_y = [d[0] for i, d in enumerate(x_vals) if y_vals[i] == -1] # Plot data and line plt.plot(setosa_x, setosa_y, 'o', label='I. setosa') plt.plot(not_setosa_x, not_setosa_y, 'x', label='Non-setosa') plt.plot(x1_vals, best_fit, 'r-', label='Linear Separator', linewidth=3) plt.ylim([0, 10]) plt.legend(loc='lower right') plt.title('Sepal Length vs Pedal Width') plt.xlabel('Pedal Width') plt.ylabel('Sepal Length') plt.show() # Plot train/test accuracies plt.plot(train_accuracy, 'k-', label='Training Accuracy') plt.plot(test_accuracy, 'r--', label='Test Accuracy') plt.title('Train and Test Set Accuracies') plt.xlabel('Generation') plt.ylabel('Accuracy') plt.legend(loc='lower right') plt.show() # Plot loss over time plt.plot(loss_vec, 'k-') plt.title('Loss per Generation') plt.xlabel('Generation') plt.ylabel('Loss') plt.show()
下面例子数据集可能更好看;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | # SVM Regression #---------------------------------- # # This function shows how to use TensorFlow to # solve support vector regression. We are going # to find the line that has the maximum margin # which INCLUDES as many points as possible # # We will use the iris data, specifically: # y = Sepal Length # x = Pedal Width import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # Create graph sess = tf.Session() # Load the data # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)] iris = datasets.load_iris() x_vals = np.array([x[ 3 ] for x in iris.data]) y_vals = np.array([y[ 0 ] for y in iris.data]) # Split data into train/test sets train_indices = np.random.choice( len (x_vals), round ( len (x_vals) * 0.8 ), replace = False ) test_indices = np.array( list ( set ( range ( len (x_vals))) - set (train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # Declare batch size batch_size = 50 # Initialize placeholders x_data = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) y_target = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) # Create variables for linear regression A = tf.Variable(tf.random_normal(shape = [ 1 , 1 ])) b = tf.Variable(tf.random_normal(shape = [ 1 , 1 ])) # Declare model operations model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function # = max(0, abs(target - predicted) + epsilon) # 1/2 margin width parameter = epsilon epsilon = tf.constant([ 0.5 ]) # Margin term in loss loss = tf.reduce_mean(tf.maximum( 0. , tf.subtract(tf. abs (tf.subtract(model_output, y_target)), epsilon))) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer( 0.075 ) train_step = my_opt.minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop train_loss = [] test_loss = [] for i in range ( 200 ): rand_index = np.random.choice( len (x_vals_train), size = batch_size) rand_x = np.transpose([x_vals_train[rand_index]]) rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y}) temp_train_loss = sess.run(loss, feed_dict = {x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])}) train_loss.append(temp_train_loss) temp_test_loss = sess.run(loss, feed_dict = {x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])}) test_loss.append(temp_test_loss) if (i + 1 ) % 50 = = 0 : print ( '-----------' ) print ( 'Generation: ' + str (i + 1 )) print ( 'A = ' + str (sess.run(A)) + ' b = ' + str (sess.run(b))) print ( 'Train Loss = ' + str (temp_train_loss)) print ( 'Test Loss = ' + str (temp_test_loss)) # Extract Coefficients [[slope]] = sess.run(A) [[y_intercept]] = sess.run(b) [width] = sess.run(epsilon) # Get best fit line best_fit = [] best_fit_upper = [] best_fit_lower = [] for i in x_vals: best_fit.append(slope * i + y_intercept) best_fit_upper.append(slope * i + y_intercept + width) best_fit_lower.append(slope * i + y_intercept - width) # Plot fit with data plt.plot(x_vals, y_vals, 'o' , label = 'Data Points' ) plt.plot(x_vals, best_fit, 'r-' , label = 'SVM Regression Line' , linewidth = 3 ) plt.plot(x_vals, best_fit_upper, 'r--' , linewidth = 2 ) plt.plot(x_vals, best_fit_lower, 'r--' , linewidth = 2 ) plt.ylim([ 0 , 10 ]) plt.legend(loc = 'lower right' ) plt.title( 'Sepal Length vs Pedal Width' ) plt.xlabel( 'Pedal Width' ) plt.ylabel( 'Sepal Length' ) plt.show() # Plot loss over time plt.plot(train_loss, 'k-' , label = 'Train Set Loss' ) plt.plot(test_loss, 'r--' , label = 'Test Set Loss' ) plt.title( 'L2 Loss per Generation' ) plt.xlabel( 'Generation' ) plt.ylabel( 'L2 Loss' ) plt.legend(loc = 'upper right' ) plt.show() |
高斯核函数的应用,其实也可以自定义很多核函数:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | # Illustration of Various Kernels #---------------------------------- # # This function wll illustrate how to # implement various kernels in TensorFlow. # # Linear Kernel: # K(x1, x2) = t(x1) * x2 # # Gaussian Kernel (RBF): # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # Create graph sess = tf.Session() # Generate non-lnear data (x_vals, y_vals) = datasets.make_circles(n_samples = 350 , factor = . 5 , noise = . 1 ) y_vals = np.array([ 1 if y = = 1 else - 1 for y in y_vals]) class1_x = [x[ 0 ] for i,x in enumerate (x_vals) if y_vals[i] = = 1 ] class1_y = [x[ 1 ] for i,x in enumerate (x_vals) if y_vals[i] = = 1 ] class2_x = [x[ 0 ] for i,x in enumerate (x_vals) if y_vals[i] = = - 1 ] class2_y = [x[ 1 ] for i,x in enumerate (x_vals) if y_vals[i] = = - 1 ] # Declare batch size batch_size = 350 # Initialize placeholders x_data = tf.placeholder(shape = [ None , 2 ], dtype = tf.float32) y_target = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) prediction_grid = tf.placeholder(shape = [ None , 2 ], dtype = tf.float32) # Create variables for svm b = tf.Variable(tf.random_normal(shape = [ 1 ,batch_size])) # Apply kernel # Linear Kernel # my_kernel = tf.matmul(x_data, tf.transpose(x_data)) # Gaussian (RBF) kernel gamma = tf.constant( - 50.0 ) dist = tf.reduce_sum(tf.square(x_data), 1 ) dist = tf.reshape(dist, [ - 1 , 1 ]) sq_dists = tf.add(tf.subtract(dist, tf.multiply( 2. , tf.matmul(x_data, tf.transpose(x_data)))), tf.transpose(dist)) my_kernel = tf.exp(tf.multiply(gamma, tf. abs (sq_dists))) # Compute SVM Model first_term = tf.reduce_sum(b) b_vec_cross = tf.matmul(tf.transpose(b), b) y_target_cross = tf.matmul(y_target, tf.transpose(y_target)) second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross))) loss = tf.negative(tf.subtract(first_term, second_term)) # Create Prediction Kernel # Linear prediction kernel # my_kernel = tf.matmul(x_data, tf.transpose(prediction_grid)) # Gaussian (RBF) prediction kernel rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1 ),[ - 1 , 1 ]) rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1 ),[ - 1 , 1 ]) pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply( 2. , tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB)) pred_kernel = tf.exp(tf.multiply(gamma, tf. abs (pred_sq_dist))) prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target),b), pred_kernel) prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output)) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32)) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer( 0.002 ) train_step = my_opt.minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop loss_vec = [] batch_accuracy = [] for i in range ( 1000 ): rand_index = np.random.choice( len (x_vals), size = batch_size) rand_x = x_vals[rand_index] rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict = {x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) acc_temp = sess.run(accuracy, feed_dict = {x_data: rand_x, y_target: rand_y, prediction_grid:rand_x}) batch_accuracy.append(acc_temp) if (i + 1 ) % 250 = = 0 : print ( 'Step #' + str (i + 1 )) print ( 'Loss = ' + str (temp_loss)) # Create a mesh to plot points in x_min, x_max = x_vals[:, 0 ]. min () - 1 , x_vals[:, 0 ]. max () + 1 y_min, y_max = x_vals[:, 1 ]. min () - 1 , x_vals[:, 1 ]. max () + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02 ), np.arange(y_min, y_max, 0.02 )) grid_points = np.c_[xx.ravel(), yy.ravel()] [grid_predictions] = sess.run(prediction, feed_dict = {x_data: rand_x, y_target: rand_y, prediction_grid: grid_points}) grid_predictions = grid_predictions.reshape(xx.shape) # Plot points and grid plt.contourf(xx, yy, grid_predictions, cmap = plt.cm.Paired, alpha = 0.8 ) plt.plot(class1_x, class1_y, 'ro' , label = 'Class 1' ) plt.plot(class2_x, class2_y, 'kx' , label = 'Class -1' ) plt.title( 'Gaussian SVM Results' ) plt.xlabel( 'x' ) plt.ylabel( 'y' ) plt.legend(loc = 'lower right' ) plt.ylim([ - 1.5 , 1.5 ]) plt.xlim([ - 1.5 , 1.5 ]) plt.show() # Plot batch accuracy plt.plot(batch_accuracy, 'k-' , label = 'Accuracy' ) plt.title( 'Batch Accuracy' ) plt.xlabel( 'Generation' ) plt.ylabel( 'Accuracy' ) plt.legend(loc = 'lower right' ) plt.show() # Plot loss over time plt.plot(loss_vec, 'k-' ) plt.title( 'Loss per Generation' ) plt.xlabel( 'Generation' ) plt.ylabel( 'Loss' ) plt.show() # Evaluate on new/unseen data points # New data points: new_points = np.array([( - 0.75 , - 0.75 ), ( - 0.5 , - 0.5 ), ( - 0.25 , - 0.25 ), ( 0.25 , 0.25 ), ( 0.5 , 0.5 ), ( 0.75 , 0.75 )]) [evaluations] = sess.run(prediction, feed_dict = {x_data: x_vals, y_target: np.transpose([y_vals]), prediction_grid: new_points}) for ix, p in enumerate (new_points): print ( '{} : class={}' . format (p, evaluations[ix])) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-05 influx测试——单条读性能很差,大约400条/s,批量写性能很高,7万条/s,总体说来适合IOT数据批量存,根据tag查和过滤场景,按照时间顺序返回
2017-05-05 乐视云监控数据存放到influxdb中
2017-05-05 influxdb入门——和mongodb一样可以动态增加字段
2017-05-05 InfluxDB 分布式时间序列数据库环境搭建——据qcon大会2016qiniu说集群很坑且闭源了