tensorflow 实现逻辑回归——原以为TensorFlow不擅长做线性回归或者逻辑回归,原来是这么简单哇!
实现的是预测 低 出生 体重 的 概率。
尼克·麦克卢尔(Nick McClure). TensorFlow机器学习实战指南 (智能系统与技术丛书) (Kindle 位置 1060-1061). Kindle 版本.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | # Logistic Regression #---------------------------------- # # This function shows how to use TensorFlow to # solve logistic regression. # y = sigmoid(Ax + b) # # We will use the low birth weight data, specifically: # y = 0 or 1 = low birth weight # x = demographic and medical history data import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import requests from tensorflow.python.framework import ops import os.path import csv ops.reset_default_graph() # Create graph sess = tf.Session() ### # Obtain and prepare data for modeling ### # Set name of data file birth_weight_file = 'birth_weight.csv' # Download data and create data file if file does not exist in current directory if not os.path.exists(birth_weight_file): birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat' birth_file = requests.get(birthdata_url) birth_data = birth_file.text.split( '\r\n' ) birth_header = birth_data[ 0 ].split( '\t' ) birth_data = [[ float (x) for x in y.split( '\t' ) if len (x)> = 1 ] for y in birth_data[ 1 :] if len (y)> = 1 ] with open (birth_weight_file, 'w' , newline = '') as f: writer = csv.writer(f) writer.writerow(birth_header) writer.writerows(birth_data) f.close() # Read birth weight data into memory birth_data = [] with open (birth_weight_file, newline = '') as csvfile: csv_reader = csv.reader(csvfile) birth_header = next (csv_reader) for row in csv_reader: birth_data.append(row) birth_data = [[ float (x) for x in row] for row in birth_data] # Pull out target variable y_vals = np.array([x[ 0 ] for x in birth_data]) # Pull out predictor variables (not id, not target, and not birthweight) x_vals = np.array([x[ 1 : 8 ] for x in birth_data]) # Set for reproducible results seed = 99 np.random.seed(seed) tf.set_random_seed(seed) # Split data into train/test = 80%/20% train_indices = np.random.choice( len (x_vals), round ( len (x_vals) * 0.8 ), replace = False ) test_indices = np.array( list ( set ( range ( len (x_vals))) - set (train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # Normalize by column (min-max norm) def normalize_cols(m): col_max = m. max (axis = 0 ) col_min = m. min (axis = 0 ) return (m - col_min) / (col_max - col_min) x_vals_train = np.nan_to_num(normalize_cols(x_vals_train)) x_vals_test = np.nan_to_num(normalize_cols(x_vals_test)) ### # Define Tensorflow computational graph¶ ### # Declare batch size batch_size = 25 # Initialize placeholders x_data = tf.placeholder(shape = [ None , 7 ], dtype = tf.float32) y_target = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) # Create variables for linear regression A = tf.Variable(tf.random_normal(shape = [ 7 , 1 ])) b = tf.Variable(tf.random_normal(shape = [ 1 , 1 ])) # Declare model operations model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function (Cross Entropy loss) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = model_output, labels = y_target)) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer( 0.01 ) train_step = my_opt.minimize(loss) ### # Train model ### # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Actual Prediction prediction = tf. round (tf.sigmoid(model_output)) predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32) accuracy = tf.reduce_mean(predictions_correct) # Training loop loss_vec = [] train_acc = [] test_acc = [] for i in range ( 15000 ): rand_index = np.random.choice( len (x_vals_train), size = batch_size) rand_x = x_vals_train[rand_index] rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict = {x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) temp_acc_train = sess.run(accuracy, feed_dict = {x_data: x_vals_train, y_target: np.transpose([y_vals_train])}) train_acc.append(temp_acc_train) temp_acc_test = sess.run(accuracy, feed_dict = {x_data: x_vals_test, y_target: np.transpose([y_vals_test])}) test_acc.append(temp_acc_test) if (i + 1 ) % 300 = = 0 : print ( 'Loss = ' + str (temp_loss)) ### # Display model performance ### # Plot loss over time plt.plot(loss_vec, 'k-' ) plt.title( 'Cross Entropy Loss per Generation' ) plt.xlabel( 'Generation' ) plt.ylabel( 'Cross Entropy Loss' ) plt.show() # Plot train and test accuracy plt.plot(train_acc, 'k-' , label = 'Train Set Accuracy' ) plt.plot(test_acc, 'r--' , label = 'Test Set Accuracy' ) plt.title( 'Train and Test Accuracy' ) plt.xlabel( 'Generation' ) plt.ylabel( 'Accuracy' ) plt.legend(loc = 'lower right' ) plt.show() |
标签:
tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-05 influx测试——单条读性能很差,大约400条/s,批量写性能很高,7万条/s,总体说来适合IOT数据批量存,根据tag查和过滤场景,按照时间顺序返回
2017-05-05 乐视云监控数据存放到influxdb中
2017-05-05 influxdb入门——和mongodb一样可以动态增加字段
2017-05-05 InfluxDB 分布式时间序列数据库环境搭建——据qcon大会2016qiniu说集群很坑且闭源了