cnn汉字识别 tensorflow demo

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
 
 
import tensorflow as tf
import os
import random
import tensorflow.contrib.slim as slim
import time
import numpy as np
import pickle
from PIL import Image
 
 
mode = "inference"
char_size = 3755
epochs = 5
batch_size = 128
checkpoint_dir = '/aiml/code/'
#train_data_dir = 'D:/Yang/softwares/Spider_ws/WordRecognition/data/train/'
#test_data_dir = 'D:/Yang/softwares/Spider_ws/WordRecognition/data/test/'
 
class DataIterator:
    def __init__(self, data_dir):
        self.image_names = []
        for root, sub_folder, file_list in os.walk(data_dir):
            self.image_names += [os.path.join(root, file_path) for file_path in file_list]
        random.shuffle(self.image_names)
        self.labels = [int(file_name[len(data_dir):].split(os.sep)[0]) for file_name in self.image_names]
 
    @property
    def size(self):
        return len(self.labels)
 
    def input_pipeline(self, batch_size, num_epochs=None):
        images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)
        labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)
        input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs)
 
        labels = input_queue[1]
        images_content = tf.read_file(input_queue[0])
        images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)
        new_size = tf.constant([64, 64], dtype=tf.int32)
        images = tf.image.resize_images(images, new_size)
        image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,
                                                          min_after_dequeue=10000)
        return image_batch, label_batch
 
 
def build_graph(top_k):
    # with tf.device('/cpu:0'):
    images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='input_image')
    labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')
 
    conv_1 = slim.conv2d(images, 64, [3, 3], 1, padding='SAME', scope='conv1')
    max_pool_1 = slim.max_pool2d(conv_1, [2, 2], [2, 2], padding='SAME')
    conv_2 = slim.conv2d(max_pool_1, 128, [3, 3], padding='SAME', scope='conv2')
    max_pool_2 = slim.max_pool2d(conv_2, [2, 2], [2, 2], padding='SAME')
    conv_3 = slim.conv2d(max_pool_2, 256, [3, 3], padding='SAME', scope='conv3')
    max_pool_3 = slim.max_pool2d(conv_3, [2, 2], [2, 2], padding='SAME')
     
    flatten = slim.flatten(max_pool_3)
    fc1 = slim.fully_connected(flatten, 1024, activation_fn=tf.nn.tanh, scope='fc1')
    logits = slim.fully_connected(fc1, char_size, activation_fn=None, scope='output_logit')
     
    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32))
 
    global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
    rate = tf.train.exponential_decay(2e-4, global_step, decay_steps=2000, decay_rate=0.97, staircase=True)
    train_op = tf.train.AdamOptimizer(learning_rate=rate).minimize(loss, global_step = global_step)
    probabilities = tf.nn.softmax(logits)
    pred = tf.identity(probabilities, name = 'prediction')
     
    return {'images': images,
            'labels': labels,
            'global_step': global_step,
            'train_op': train_op,
            'loss': loss,
            'accuracy': accuracy}
 
def train():
    train_feeder = DataIterator(data_dir=train_data_dir)
    test_feeder = DataIterator(data_dir=test_data_dir)
    with tf.Session() as sess:
        train_images, train_labels = train_feeder.input_pipeline(batch_size)
        test_images, test_labels = test_feeder.input_pipeline(batch_size)
        graph = build_graph(top_k=1)
        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        saver = tf.train.Saver()
 
        print (':::Training Start:::')
        try:
            while not coord.should_stop():
                start_time = time.time()
                train_images_batch, train_labels_batch = sess.run([train_images, train_labels])
                feed_dict = {graph['images']: train_images_batch,
                             graph['labels']: train_labels_batch}
                _, loss_val, step = sess.run(
                    [graph['train_op'], graph['loss'], graph['global_step']],
                    feed_dict=feed_dict)
                end_time = time.time()
                if step % 10 == 1:
                    print ("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val))
                if step > 200000:
                    break
                if step % 50 == 1:
                    test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
                    feed_dict = {graph['images']: test_images_batch,
                                 graph['labels']: test_labels_batch}
                    accuracy_test = sess.run(
                        graph['accuracy'],
                        feed_dict=feed_dict)
                    print ('===============Eval a batch=======================')
                    print ('the step {0} test accuracy: {1}'.format(step, accuracy_test))
                    print ('===============Eval a batch=======================')
                if step % 200 == 1:
                    print ('Save the ckpt of {0}'.format(step))
                    saver.save(sess, os.path.join(checkpoint_dir, 'my-model'),
                               global_step=graph['global_step'])
        except tf.errors.OutOfRangeError:
            print ('==================Train Finished================')
            saver.save(sess, os.path.join(checkpoint_dir, 'my-model'), global_step=graph['global_step'])
        finally:
            coord.request_stop()
        coord.join(threads)
 
def new_inference(predict_dir):
    saver = tf.train.import_meta_graph( checkpoint_dir + "my-model-164152.meta", clear_devices=True)
    image_list = []
    new_file_list = []
    for root, _, file_list in os.walk(predict_dir):
        new_file_list += [file for file in file_list if ".nfs" not in file]
        new_file_list.sort(key= lambda x:int(x[:-4]))
        for file in new_file_list:
#            print (new_file_list)
            image = os.path.join(root, file)        
            temp_image = Image.open(image).convert('L')
            temp_image = temp_image.resize((64, 64), Image.ANTIALIAS)          
            temp_image = np.asarray(temp_image) / 255.0
            image_list.append(temp_image)
    image_list = np.asarray(image_list)      
    temp_image = image_list.reshape([len(new_file_list), 64, 64, 1])
    with tf.Session() as sess:
        saver.restore(sess, checkpoint_dir + "my-model-164152") #读入模型参数
        graph = tf.get_default_graph()
        op = graph.get_tensor_by_name("prediction:0")
        input_tensor = graph.get_tensor_by_name('input_image:0')
        probs = sess.run(op,feed_dict = {input_tensor:temp_image})
        result = []
        for word in probs:
            result.append(np.argsort(-word)[:3])
        return result
         
def main():
 
    if mode == "train":
        train()
    if mode == 'inference':
        word_dict = pickle.load(open("/aiml/code/word_dict", "rb"))
        image_path = '/aiml/data/'
        index = new_inference(image_path)
        file = open("/aiml/result/result.txt", "w")       
#        print ("预测文字为: ")
        pred_list = []
        for i in index:
#            print ("最大几率三个:")
#            print (word_dict[str(i[0])],word_dict[str(i[1])],word_dict[str(i[2])])               
            pred_list.append(word_dict[str(i[0])])
            file.write(word_dict[str(i[0])])
         
if __name__ == "__main__":
#    tf.app.run()
    main()

  

posted @   bonelee  阅读(2538)  评论(2编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-05-02 git 配置代理
2017-05-02 Apache Ignite——集合分布式缓存、计算、存储的分布式框架
2017-05-02 InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等
点击右上角即可分享
微信分享提示