cnn汉字识别 tensorflow demo
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | # -*- coding: utf-8 -*- import tensorflow as tf import os import random import tensorflow.contrib.slim as slim import time import numpy as np import pickle from PIL import Image mode = "inference" char_size = 3755 epochs = 5 batch_size = 128 checkpoint_dir = '/aiml/code/' #train_data_dir = 'D:/Yang/softwares/Spider_ws/WordRecognition/data/train/' #test_data_dir = 'D:/Yang/softwares/Spider_ws/WordRecognition/data/test/' class DataIterator: def __init__( self , data_dir): self .image_names = [] for root, sub_folder, file_list in os.walk(data_dir): self .image_names + = [os.path.join(root, file_path) for file_path in file_list] random.shuffle( self .image_names) self .labels = [ int (file_name[ len (data_dir):].split(os.sep)[ 0 ]) for file_name in self .image_names] @property def size( self ): return len ( self .labels) def input_pipeline( self , batch_size, num_epochs = None ): images_tensor = tf.convert_to_tensor( self .image_names, dtype = tf.string) labels_tensor = tf.convert_to_tensor( self .labels, dtype = tf.int64) input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs = num_epochs) labels = input_queue[ 1 ] images_content = tf.read_file(input_queue[ 0 ]) images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels = 1 ), tf.float32) new_size = tf.constant([ 64 , 64 ], dtype = tf.int32) images = tf.image.resize_images(images, new_size) image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size = batch_size, capacity = 50000 , min_after_dequeue = 10000 ) return image_batch, label_batch def build_graph(top_k): # with tf.device('/cpu:0'): images = tf.placeholder(dtype = tf.float32, shape = [ None , 64 , 64 , 1 ], name = 'input_image' ) labels = tf.placeholder(dtype = tf.int64, shape = [ None ], name = 'label_batch' ) conv_1 = slim.conv2d(images, 64 , [ 3 , 3 ], 1 , padding = 'SAME' , scope = 'conv1' ) max_pool_1 = slim.max_pool2d(conv_1, [ 2 , 2 ], [ 2 , 2 ], padding = 'SAME' ) conv_2 = slim.conv2d(max_pool_1, 128 , [ 3 , 3 ], padding = 'SAME' , scope = 'conv2' ) max_pool_2 = slim.max_pool2d(conv_2, [ 2 , 2 ], [ 2 , 2 ], padding = 'SAME' ) conv_3 = slim.conv2d(max_pool_2, 256 , [ 3 , 3 ], padding = 'SAME' , scope = 'conv3' ) max_pool_3 = slim.max_pool2d(conv_3, [ 2 , 2 ], [ 2 , 2 ], padding = 'SAME' ) flatten = slim.flatten(max_pool_3) fc1 = slim.fully_connected(flatten, 1024 , activation_fn = tf.nn.tanh, scope = 'fc1' ) logits = slim.fully_connected(fc1, char_size, activation_fn = None , scope = 'output_logit' ) loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels)) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1 ), labels), tf.float32)) global_step = tf.get_variable( "step" , [], initializer = tf.constant_initializer( 0.0 ), trainable = False ) rate = tf.train.exponential_decay( 2e - 4 , global_step, decay_steps = 2000 , decay_rate = 0.97 , staircase = True ) train_op = tf.train.AdamOptimizer(learning_rate = rate).minimize(loss, global_step = global_step) probabilities = tf.nn.softmax(logits) pred = tf.identity(probabilities, name = 'prediction' ) return { 'images' : images, 'labels' : labels, 'global_step' : global_step, 'train_op' : train_op, 'loss' : loss, 'accuracy' : accuracy} def train(): train_feeder = DataIterator(data_dir = train_data_dir) test_feeder = DataIterator(data_dir = test_data_dir) with tf.Session() as sess: train_images, train_labels = train_feeder.input_pipeline(batch_size) test_images, test_labels = test_feeder.input_pipeline(batch_size) graph = build_graph(top_k = 1 ) sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess, coord = coord) saver = tf.train.Saver() print ( ':::Training Start:::' ) try : while not coord.should_stop(): start_time = time.time() train_images_batch, train_labels_batch = sess.run([train_images, train_labels]) feed_dict = {graph[ 'images' ]: train_images_batch, graph[ 'labels' ]: train_labels_batch} _, loss_val, step = sess.run( [graph[ 'train_op' ], graph[ 'loss' ], graph[ 'global_step' ]], feed_dict = feed_dict) end_time = time.time() if step % 10 = = 1 : print ( "the step {0} takes {1} loss {2}" . format (step, end_time - start_time, loss_val)) if step > 200000 : break if step % 50 = = 1 : test_images_batch, test_labels_batch = sess.run([test_images, test_labels]) feed_dict = {graph[ 'images' ]: test_images_batch, graph[ 'labels' ]: test_labels_batch} accuracy_test = sess.run( graph[ 'accuracy' ], feed_dict = feed_dict) print ( '===============Eval a batch=======================' ) print ( 'the step {0} test accuracy: {1}' . format (step, accuracy_test)) print ( '===============Eval a batch=======================' ) if step % 200 = = 1 : print ( 'Save the ckpt of {0}' . format (step)) saver.save(sess, os.path.join(checkpoint_dir, 'my-model' ), global_step = graph[ 'global_step' ]) except tf.errors.OutOfRangeError: print ( '==================Train Finished================' ) saver.save(sess, os.path.join(checkpoint_dir, 'my-model' ), global_step = graph[ 'global_step' ]) finally : coord.request_stop() coord.join(threads) def new_inference(predict_dir): saver = tf.train.import_meta_graph( checkpoint_dir + "my-model-164152.meta" , clear_devices = True ) image_list = [] new_file_list = [] for root, _, file_list in os.walk(predict_dir): new_file_list + = [ file for file in file_list if ".nfs" not in file ] new_file_list.sort(key = lambda x: int (x[: - 4 ])) for file in new_file_list: # print (new_file_list) image = os.path.join(root, file ) temp_image = Image. open (image).convert( 'L' ) temp_image = temp_image.resize(( 64 , 64 ), Image.ANTIALIAS) temp_image = np.asarray(temp_image) / 255.0 image_list.append(temp_image) image_list = np.asarray(image_list) temp_image = image_list.reshape([ len (new_file_list), 64 , 64 , 1 ]) with tf.Session() as sess: saver.restore(sess, checkpoint_dir + "my-model-164152" ) #读入模型参数 graph = tf.get_default_graph() op = graph.get_tensor_by_name( "prediction:0" ) input_tensor = graph.get_tensor_by_name( 'input_image:0' ) probs = sess.run(op,feed_dict = {input_tensor:temp_image}) result = [] for word in probs: result.append(np.argsort( - word)[: 3 ]) return result def main(): if mode = = "train" : train() if mode = = 'inference' : word_dict = pickle.load( open ( "/aiml/code/word_dict" , "rb" )) image_path = '/aiml/data/' index = new_inference(image_path) file = open ( "/aiml/result/result.txt" , "w" ) # print ("预测文字为: ") pred_list = [] for i in index: # print ("最大几率三个:") # print (word_dict[str(i[0])],word_dict[str(i[1])],word_dict[str(i[2])]) pred_list.append(word_dict[ str (i[ 0 ])]) file .write(word_dict[ str (i[ 0 ])]) if __name__ = = "__main__" : # tf.app.run() main() |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-02 git 配置代理
2017-05-02 Apache Ignite——集合分布式缓存、计算、存储的分布式框架
2017-05-02 InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等