tflearn数据预处理
1 2 3 4 5 6 7 8 9 10 11 12 | #I just added a function for custom data preprocessing, you can use it as: minmax_scaler = sklearn.preprocessing.MinMaxScaler(....) def my_func(X): X = minmax_scaler.inverse_transform(X) return X dprep = tflearn.DataPreprocessing() dprep.add_custom_preprocessing(my_func) input_layer = tflearn.input_data(shape = [...], data_preprocessing = dprep) |
我自己的应用:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | def my_func(X): X = X / 255. return X def get_model(width, height, classes = 40 ): # TODO, modify model # Real-time data preprocessing img_prep = tflearn.ImagePreprocessing() #img_prep.add_featurewise_zero_center(per_channel=True) #img_prep.add_featurewise_stdnorm() img_prep.add_custom_preprocessing(my_func) network = input_data(shape = [ None , width, height, 1 ], data_preprocessing = img_prep) # if RGB, 224,224,3 #network = input_data(shape=[None, width, height, 1]) network = conv_2d(network, 32 , 3 , activation = 'relu' ) network = max_pool_2d(network, 2 ) network = conv_2d(network, 64 , 3 , activation = 'relu' ) network = conv_2d(network, 64 , 3 , activation = 'relu' ) network = max_pool_2d(network, 2 ) network = fully_connected(network, 512 , activation = 'relu' ) network = dropout(network, 0.5 ) network = fully_connected(network, classes, activation = 'softmax' ) network = regression(network, optimizer = 'adam' , loss = 'categorical_crossentropy' , learning_rate = 0.001 ) model = tflearn.DNN(network, tensorboard_verbose = 0 ) return model |
标签:
tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-05-02 git 配置代理
2017-05-02 Apache Ignite——集合分布式缓存、计算、存储的分布式框架
2017-05-02 InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等