tflearn数据预处理

 

1
2
3
4
5
6
7
8
9
10
11
12
#I just added a function for custom data preprocessing, you can use it as:
 
minmax_scaler = sklearn.preprocessing.MinMaxScaler(....)
 
def my_func(X):
    X = minmax_scaler.inverse_transform(X)
    return X
 
dprep = tflearn.DataPreprocessing()
dprep.add_custom_preprocessing(my_func)
 
input_layer = tflearn.input_data(shape=[...], data_preprocessing=dprep)

 

我自己的应用:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def my_func(X):
    X = X/255.
    return X
 
def get_model(width, height, classes=40):
    # TODO, modify model
    # Real-time data preprocessing
    img_prep = tflearn.ImagePreprocessing()
    #img_prep.add_featurewise_zero_center(per_channel=True)
    #img_prep.add_featurewise_stdnorm()
 
    img_prep.add_custom_preprocessing(my_func)
 
    network = input_data(shape=[None, width, height, 1], data_preprocessing=img_prep)  # if RGB, 224,224,3
    #network = input_data(shape=[None, width, height, 1])
    network = conv_2d(network, 32, 3, activation='relu')
    network = max_pool_2d(network, 2)
    network = conv_2d(network, 64, 3, activation='relu')
    network = conv_2d(network, 64, 3, activation='relu')
    network = max_pool_2d(network, 2)
    network = fully_connected(network, 512, activation='relu')
    network = dropout(network, 0.5)
    network = fully_connected(network, classes, activation='softmax')
    network = regression(network, optimizer='adam',
                         loss='categorical_crossentropy',
                         learning_rate=0.001)
    model = tflearn.DNN(network, tensorboard_verbose=0)
    return model

 

posted @   bonelee  阅读(936)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-05-02 git 配置代理
2017-05-02 Apache Ignite——集合分布式缓存、计算、存储的分布式框架
2017-05-02 InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等
点击右上角即可分享
微信分享提示