cnn handwrite使用原生的TensorFlow进行预测
100个汉字,放在data目录下。直接将下述文件和data存在同一个目录下运行即可。
关键参数:
run_mode = "train" 训练模型用,修改为validation 表示验证100张图片的预测精度,修改为inference表示预测 './data/00098/102544.png'这个图片手写识别结果,返回top3。
charset_size = 100 表示汉字数目。如果是全量数据,则为3755.
代码参考了:https://github.com/burness/tensorflow-101/blob/master/chinese_hand_write_rec/src/chinese_rec.py
其中加入:(1)图像随机左右旋转30度特性 (2)断点续传进行训练(3)为了达到更高精度,加入了一个卷积层,见https://github.com/AmemiyaYuko/HandwrittenChineseCharacterRecognition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | import tensorflow as tf import os import random import math import tensorflow.contrib.slim as slim import time import logging import numpy as np import pickle from PIL import Image logger = logging.getLogger( 'Training a chinese write char recognition' ) logger.setLevel(logging.INFO) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch = logging.StreamHandler() ch.setLevel(logging.INFO) logger.addHandler(ch) run_mode = "train" charset_size = 100 # 3755 max_steps = 12002 save_steps = 2000 """ # for online 3755 words training checkpoint_dir = '/aiml/dfs/checkpoint/' train_data_dir = '/aiml/data/train/' test_data_dir = '/aiml/data/test/' log_dir = '/aiml/dfs/' """ checkpoint_dir = './checkpoint2/' train_data_dir = './data/' test_data_dir = './data/' log_dir = './' tf.app.flags.DEFINE_string( 'mode' , run_mode, 'Running mode. One of {"train", "valid", "test"}' ) tf.app.flags.DEFINE_boolean( 'random_flip_up_down' , True , "Whether to random flip up down" ) tf.app.flags.DEFINE_boolean( 'random_brightness' , True , "whether to adjust brightness" ) tf.app.flags.DEFINE_boolean( 'random_contrast' , True , "whether to random constrast" ) tf.app.flags.DEFINE_integer( 'charset_size' , charset_size, "Choose the first `charset_size` character to conduct our experiment." ) tf.app.flags.DEFINE_integer( 'image_size' , 64 , "Needs to provide same value as in training." ) tf.app.flags.DEFINE_boolean( 'gray' , True , "whether to change the rbg to gray" ) tf.app.flags.DEFINE_integer( 'max_steps' , max_steps, 'the max training steps ' ) tf.app.flags.DEFINE_integer( 'eval_steps' , 50 , "the step num to eval" ) tf.app.flags.DEFINE_integer( 'save_steps' , save_steps, "the steps to save" ) tf.app.flags.DEFINE_string( 'checkpoint_dir' , checkpoint_dir, 'the checkpoint dir' ) tf.app.flags.DEFINE_string( 'train_data_dir' , train_data_dir, 'the train dataset dir' ) tf.app.flags.DEFINE_string( 'test_data_dir' , test_data_dir, 'the test dataset dir' ) tf.app.flags.DEFINE_string( 'log_dir' , log_dir, 'the logging dir' ) ############################## # resume training tf.app.flags.DEFINE_boolean( 'restore' , True , 'whether to restore from checkpoint' ) ############################## tf.app.flags.DEFINE_boolean( 'epoch' , 10 , 'Number of epoches' ) tf.app.flags.DEFINE_boolean( 'batch_size' , 128 , 'Validation batch size' ) FLAGS = tf.app.flags.FLAGS class DataIterator: def __init__( self , data_dir): # Set FLAGS.charset_size to a small value if available computation power is limited. truncate_path = data_dir + ( '%05d' % FLAGS.charset_size) print (truncate_path) self .image_names = [] for root, sub_folder, file_list in os.walk(data_dir): if root < truncate_path: self .image_names + = [os.path.join(root, file_path) for file_path in file_list] random.shuffle( self .image_names) self .labels = [ int (file_name[ len (data_dir):].split(os.sep)[ 0 ]) for file_name in self .image_names] @property def size( self ): return len ( self .labels) @staticmethod def data_augmentation(images): if FLAGS.random_flip_up_down: # images = tf.image.random_flip_up_down(images) images = tf.contrib.image.rotate(images, random.randint( 0 , 30 ) * math.pi / 180 , interpolation = 'BILINEAR' ) if FLAGS.random_brightness: images = tf.image.random_brightness(images, max_delta = 0.3 ) if FLAGS.random_contrast: images = tf.image.random_contrast(images, 0.8 , 1.2 ) return images def input_pipeline( self , batch_size, num_epochs = None , aug = False ): images_tensor = tf.convert_to_tensor( self .image_names, dtype = tf.string) labels_tensor = tf.convert_to_tensor( self .labels, dtype = tf.int64) input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs = num_epochs) labels = input_queue[ 1 ] images_content = tf.read_file(input_queue[ 0 ]) images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels = 1 ), tf.float32) if aug: images = self .data_augmentation(images) new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype = tf.int32) images = tf.image.resize_images(images, new_size) image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size = batch_size, capacity = 50000 , min_after_dequeue = 10000 ) return image_batch, label_batch def build_graph(top_k): # with tf.device('/cpu:0'): keep_prob = tf.placeholder(dtype = tf.float32, shape = [], name = 'keep_prob' ) images = tf.placeholder(dtype = tf.float32, shape = [ None , 64 , 64 , 1 ], name = 'image_batch' ) labels = tf.placeholder(dtype = tf.int64, shape = [ None ], name = 'label_batch' ) conv_1 = slim.conv2d(images, 64 , [ 3 , 3 ], 1 , padding = 'SAME' , scope = 'conv1' ) max_pool_1 = slim.max_pool2d(conv_1, [ 2 , 2 ], [ 2 , 2 ], padding = 'SAME' ) conv_2 = slim.conv2d(max_pool_1, 128 , [ 3 , 3 ], padding = 'SAME' , scope = 'conv2' ) max_pool_2 = slim.max_pool2d(conv_2, [ 2 , 2 ], [ 2 , 2 ], padding = 'SAME' ) conv_3 = slim.conv2d(max_pool_2, 256 , [ 3 , 3 ], padding = 'SAME' , scope = 'conv3' ) max_pool_3 = slim.max_pool2d(conv_3, [ 2 , 2 ], [ 2 , 2 ], padding = 'SAME' ) conv_4 = slim.conv2d(max_pool_3, 512 , [ 3 , 3 ], [ 2 , 2 ], scope = "conv4" , padding = "SAME" ) max_pool_4 = slim.max_pool2d(conv_4, [ 2 , 2 ], [ 2 , 2 ], padding = "SAME" ) flatten = slim.flatten(max_pool_4) fc1 = slim.fully_connected(slim.dropout(flatten, keep_prob), 1024 , activation_fn = tf.nn.tanh, scope = 'fc1' ) logits = slim.fully_connected(slim.dropout(fc1, keep_prob), FLAGS.charset_size, activation_fn = None , scope = 'fc2' ) # logits = slim.fully_connected(flatten, FLAGS.charset_size, activation_fn=None, reuse=reuse, scope='fc') loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels)) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1 ), labels), tf.float32)) global_step = tf.get_variable( "step" , [], initializer = tf.constant_initializer( 0.0 ), trainable = False ) rate = tf.train.exponential_decay( 2e - 4 , global_step, decay_steps = 2000 , decay_rate = 0.97 , staircase = True ) train_op = tf.train.AdamOptimizer(learning_rate = rate).minimize(loss, global_step = global_step) probabilities = tf.nn.softmax(logits) tf.summary.scalar( 'loss' , loss) tf.summary.scalar( 'accuracy' , accuracy) merged_summary_op = tf.summary.merge_all() predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k = top_k) accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32)) return { 'images' : images, 'labels' : labels, 'keep_prob' : keep_prob, 'top_k' : top_k, 'global_step' : global_step, 'train_op' : train_op, 'loss' : loss, 'accuracy' : accuracy, 'accuracy_top_k' : accuracy_in_top_k, 'merged_summary_op' : merged_summary_op, 'predicted_distribution' : probabilities, 'predicted_index_top_k' : predicted_index_top_k, 'predicted_val_top_k' : predicted_val_top_k} def train(): print ( 'Begin training' ) train_feeder = DataIterator(FLAGS.train_data_dir) test_feeder = DataIterator(FLAGS.test_data_dir) with tf.Session() as sess: train_images, train_labels = train_feeder.input_pipeline(batch_size = FLAGS.batch_size, aug = True ) test_images, test_labels = test_feeder.input_pipeline(batch_size = FLAGS.batch_size) graph = build_graph(top_k = 1 ) sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess, coord = coord) saver = tf.train.Saver() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train' , sess.graph) test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val' ) start_step = 0 if FLAGS.restore: ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) print ( "restore from the checkpoint {0}" . format (ckpt)) start_step + = int (ckpt.split( '-' )[ - 1 ]) logger.info( ':::Training Start:::' ) try : while not coord.should_stop(): start_time = time.time() train_images_batch, train_labels_batch = sess.run([train_images, train_labels]) feed_dict = {graph[ 'images' ]: train_images_batch, graph[ 'labels' ]: train_labels_batch, graph[ 'keep_prob' ]: 0.8 } _, loss_val, train_summary, step = sess.run( [graph[ 'train_op' ], graph[ 'loss' ], graph[ 'merged_summary_op' ], graph[ 'global_step' ]], feed_dict = feed_dict) train_writer.add_summary(train_summary, step) end_time = time.time() logger.info( "the step {0} takes {1} loss {2}" . format (step, end_time - start_time, loss_val)) if step > FLAGS.max_steps: break if step % FLAGS.eval_steps = = 1 : test_images_batch, test_labels_batch = sess.run([test_images, test_labels]) feed_dict = {graph[ 'images' ]: test_images_batch, graph[ 'labels' ]: test_labels_batch, graph[ 'keep_prob' ]: 1.0 } accuracy_test, test_summary = sess.run( [graph[ 'accuracy' ], graph[ 'merged_summary_op' ]], feed_dict = feed_dict) test_writer.add_summary(test_summary, step) logger.info( '===============Eval a batch=======================' ) logger.info( 'the step {0} test accuracy: {1}' . format (step, accuracy_test)) logger.info( '===============Eval a batch=======================' ) if step % FLAGS.save_steps = = 1 : logger.info( 'Save the ckpt of {0}' . format (step)) saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model' ), global_step = graph[ 'global_step' ]) except tf.errors.OutOfRangeError: logger.info( '==================Train Finished================' ) saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model' ), global_step = graph[ 'global_step' ]) finally : coord.request_stop() coord.join(threads) def validation(): print ( 'validation' ) test_feeder = DataIterator(FLAGS.test_data_dir) final_predict_val = [] final_predict_index = [] groundtruth = [] with tf.Session() as sess: test_images, test_labels = test_feeder.input_pipeline(batch_size = FLAGS.batch_size, num_epochs = 1 ) graph = build_graph(top_k = 3 ) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # initialize test_feeder's inside state coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess = sess, coord = coord) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) print ( "restore from the checkpoint {0}" . format (ckpt)) print ( ':::Start validation:::' ) try : i = 0 acc_top_1, acc_top_k = 0.0 , 0.0 while not coord.should_stop(): i + = 1 start_time = time.time() test_images_batch, test_labels_batch = sess.run([test_images, test_labels]) feed_dict = {graph[ 'images' ]: test_images_batch, graph[ 'labels' ]: test_labels_batch, graph[ 'keep_prob' ]: 1.0 } batch_labels, probs, indices, acc_1, acc_k = sess.run([graph[ 'labels' ], graph[ 'predicted_val_top_k' ], graph[ 'predicted_index_top_k' ], graph[ 'accuracy' ], graph[ 'accuracy_top_k' ]], feed_dict = feed_dict) final_predict_val + = probs.tolist() final_predict_index + = indices.tolist() groundtruth + = batch_labels.tolist() acc_top_1 + = acc_1 acc_top_k + = acc_k end_time = time.time() logger.info( "the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)" . format (i, end_time - start_time, acc_1, acc_k)) except tf.errors.OutOfRangeError: logger.info( '==================Validation Finished================' ) acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size logger.info( 'top 1 accuracy {0} top k accuracy {1}' . format (acc_top_1, acc_top_k)) finally : coord.request_stop() coord.join(threads) return { 'prob' : final_predict_val, 'indices' : final_predict_index, 'groundtruth' : groundtruth} def inference(image): print ( 'inference' ) temp_image = Image. open (image).convert( 'L' ) temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS) temp_image = np.asarray(temp_image) / 255.0 temp_image = temp_image.reshape([ - 1 , 64 , 64 , 1 ]) with tf.Session() as sess: logger.info( '========start inference============' ) # images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1]) # Pass a shadow label 0. This label will not affect the computation graph. graph = build_graph(top_k = 3 ) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) if ckpt: saver.restore(sess, ckpt) predict_val, predict_index = sess.run([graph[ 'predicted_val_top_k' ], graph[ 'predicted_index_top_k' ]], feed_dict = {graph[ 'images' ]: temp_image, graph[ 'keep_prob' ]: 1.0 }) return predict_val, predict_index def main(_): print (FLAGS.mode) if FLAGS.mode = = "train" : train() elif FLAGS.mode = = 'validation' : dct = validation() result_file = 'result.dict' logger.info( 'Write result into {0}' . format (result_file)) with open (result_file, 'wb' ) as f: pickle.dump(dct, f) logger.info( 'Write file ends' ) elif FLAGS.mode = = 'inference' : image_path = './data/00098/102544.png' final_predict_val, final_predict_index = inference(image_path) logger.info( 'the result info label {0} predict index {1} predict_val {2}' . format ( 190 , final_predict_index, final_predict_val)) if __name__ = = "__main__" : tf.app.run() |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」