tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用——模型层次太深,或者太复杂训练时候都不会收敛
tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用。
数据目录在data,data下放了汉字识别图片:
data$ ls
0 1 10 11 12 13 14 15 16 2 3 4 5 6 7 8 9
datag$ ls 0
xxx.png yyy.png ....
代码:
如果将get model里的模型层数加非常深,训练时候很可能不会收敛,精度一直停留下1%以内。
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import os import numpy as np import pickle import tflearn from PIL import Image from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import conv_2d, max_pool_2d, avg_pool_2d from tflearn.layers.merge_ops import merge from tflearn.layers.estimator import regression from tflearn.data_utils import to_categorical, shuffle from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from tflearn.layers.conv import highway_conv_2d, max_pool_2d from tflearn.layers.normalization import local_response_normalization, batch_normalization def resize_image(in_image, new_width, new_height, out_image=None, resize_mode=Image.ANTIALIAS): """ Resize an image. Arguments: in_image: `PIL.Image`. The image to resize. new_width: `int`. The image new width. new_height: `int`. The image new height. out_image: `str`. If specified, save the image to the given path. resize_mode: `PIL.Image.mode`. The resizing mode. Returns: `PIL.Image`. The resize image. """ img = in_image.resize((new_width, new_height), resize_mode) if out_image: img.save(out_image) return img def convert_color(in_image, mode): """ Convert image color with provided `mode`. """ return in_image.convert(mode) def pil_to_nparray(pil_image): """ Convert a PIL.Image to numpy array. """ pil_image.load() return np.asarray(pil_image, dtype="float32") def iterbrowse(path): for home, dirs, files in os.walk(path): for filename in files: yield os.path.join(home, filename) def directory_to_samples(directory, flags): """ Read a directory, and list all subdirectories files as class sample """ samples = [] targets = [] # label class is from 0 !!! label = 0 try: # Python 2 classes = sorted(os.walk(directory).next()[1]) except Exception: # Python 3 classes = sorted(os.walk(directory).__next__()[1]) for c in classes: c_dir = os.path.join(directory, c) try: # Python 2 walk = os.walk(c_dir).next() except Exception: # Python 3 walk = os.walk(c_dir).__next__() for sample in walk[2]: if any(flag in sample for flag in flags): samples.append(os.path.join(c_dir, sample)) targets.append(label) label += 1 return samples, targets # Get the pixel from the given image def get_pixel(image, i, j): # Inside image bounds? width, height = image.size if i > width or j > height: return None # Get Pixel pixel = image.getpixel((i, j)) return pixel # Create a Grayscale version of the image def convert_to_one_channel(image): # !!! I assume that the png file is grayscale. And R == G == B !!!! So I check it... """ for i in range(len(image)): for j in range(len(image[i])): pixel = image[i][j] # Get R, G, B values (This are int from 0 to 255) assert len(pixel) == 3 red = pixel[0] green = pixel[1] blue = pixel[2] assert red == green == blue assert 0 <= red <= 1 """ # Just extract 1 channel data return image[:, :, [0]] def image_dirs_to_samples(directory, resize=None, convert_gray=False, filetypes=None): print("Starting to parse images...") samples, targets = directory_to_samples(directory, flags=filetypes) for i, s in enumerate(samples): print("Process %d th file %s" % (i+1, s)) samples[i] = Image.open(s) # Load an image, returns PIL.Image. if resize: ######################## TODO ####################### samples[i] = resize_image(samples[i], resize[0], resize[1]) ######################### TODO ####################### convert to more data # if convert_gray: # samples[i] = convert_color(samples[i], 'L') samples[i] = pil_to_nparray(samples[i]) samples[i] /= 255. # ormalize a list of sample image data in the range of 0 to 1 samples[i] = convert_to_one_channel(samples[i]) # just want 1 channel data print("Parsing Done!") return samples, targets def load_data(dirname, resize_pics=(128, 128), shuffle_data=True): dataset_file = os.path.join(dirname, 'data.pkl') try: X, Y, org_labels = pickle.load(open(dataset_file, 'rb')) except Exception: # X, Y = image_dirs_to_samples(os.path.join(dirname, 'train/'), resize_pics, False, ['.jpg', '.png']) X, Y = image_dirs_to_samples(dirname, resize_pics, False, ['.jpg', '.png']) # TODO, memory is too small to load all data org_labels = Y Y = to_categorical(Y, np.max(Y) + 1) # First class is '0', Convert class vector (integers from 0 to nb_classes) if shuffle_data: X, Y, org_labels = shuffle(X, Y, org_labels) pickle.dump((X, Y, org_labels), open(dataset_file, 'wb')) return X, Y, org_labels class EarlyStoppingCallback(tflearn.callbacks.Callback): def __init__(self, val_acc_thresh): # Store a validation accuracy threshold, which we can compare against # the current validation accuracy at, say, each epoch, each batch step, etc. self.val_acc_thresh = val_acc_thresh def on_epoch_end(self, training_state): """ This is the final method called in trainer.py in the epoch loop. We can stop training and leave without losing any information with a simple exception. """ # print dir(training_state) print("Terminating training at the end of epoch", training_state.epoch) if training_state.val_acc >= self.val_acc_thresh and training_state.acc_value >= self.val_acc_thresh: raise StopIteration def on_train_end(self, training_state): """ Furthermore, tflearn will then immediately call this method after we terminate training, (or when training ends regardless). This would be a good time to store any additional information that tflearn doesn't store already. """ print("Successfully left training! Final model accuracy:", training_state.acc_value) def get_model(width, height, classes=40): # TODO, modify model # Real-time data preprocessing img_prep = tflearn.ImagePreprocessing() # Real-time data preprocessing img_prep = tflearn.ImagePreprocessing() img_prep.add_featurewise_zero_center(per_channel=True) img_prep.add_featurewise_stdnorm() network = input_data(shape=[None, width, height, 1], data_preprocessing=img_prep) # if RGB, 224,224,3 network = conv_2d(network, 32, 3, activation='relu') network = max_pool_2d(network, 2) network = conv_2d(network, 64, 3, activation='relu') network = conv_2d(network, 64, 3, activation='relu') network = max_pool_2d(network, 2) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.5) network = fully_connected(network, classes, activation='softmax') network = regression(network, optimizer='adam', loss='categorical_crossentropy', learning_rate=0.001) model = tflearn.DNN(network, tensorboard_verbose=0) return model if __name__ == "__main__": width, height = 32, 32 X, Y, org_labels = load_data(dirname="data", resize_pics=(width, height)) trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.2, random_state=666) print("sample data:") print(trainX[0]) print(trainY[0]) print(testX[-1]) print(testY[-1]) model = get_model(width, height, classes=100) filename = 'cnn_handwrite-acc0.8.tflearn' # try to load model and resume training #try: # model.load(filename) # print("Model loaded OK. Resume training!") #except: # pass # Initialize our callback with desired accuracy threshold. early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.9) try: model.fit(trainX, trainY, validation_set=(testX, testY), n_epoch=500, shuffle=True, snapshot_epoch=True, # Snapshot (save & evaluate) model every epoch. show_metric=True, batch_size=32, callbacks=early_stopping_cb, run_id='cnn_handwrite') except StopIteration as e: print("OK, stop iterate!Good!") model.save(filename) # predict all data and calculate confusion_matrix model.load(filename) pro_arr =model.predict(X) predict_labels = np.argmax(pro_arr, axis=1) print(classification_report(org_labels, predict_labels)) print(confusion_matrix(org_labels, predict_labels))
运行效果:100个汉字2分钟就可以达到95%精度。
--------------------------------- Run id: cnn_handwrite Log directory: /tmp/tflearn_logs/ --------------------------------- Preprocessing... Calculating mean over all dataset (this may take long)... Mean: [ 0.89235026] (To avoid repetitive computation, add it to argument 'mean' of `add_featurewise_zero_center`) --------------------------------- Preprocessing... Calculating std over all dataset (this may take long)... STD: 0.192279 (To avoid repetitive computation, add it to argument 'std' of `add_featurewise_stdnorm`) --------------------------------- Training samples: 19094 Validation samples: 4774 -- Training Step: 597 | total loss: 0.70288 | time: 40.959ss | Adam | epoch: 001 | loss: 0.70288 - acc: 0.7922 | val_loss: 0.54380 - val_acc: 0.8460 -- iter: 19094/19094 -- Terminating training at the end of epoch 1 Training Step: 1194 | total loss: 0.48860 | time: 40.245s | Adam | epoch: 002 | loss: 0.48860 - acc: 0.8783 | val_loss: 0.37020 - val_acc: 0.8923 -- iter: 19094/19094 -- Terminating training at the end of epoch 2 Training Step: 1791 | total loss: 0.35790 | time: 41.315ss | Adam | epoch: 003 | loss: 0.35790 - acc: 0.9090 | val_loss: 0.34719 - val_acc: 0.9049 -- iter: 19094/19094 -- Terminating training at the end of epoch 3 Successfully left training! Final model accuracy: 0.908959209919 OK, stop iterate!Good! precision recall f1-score support 0 1.00 0.99 0.99 239 1 0.95 0.96 0.96 237 2 0.91 0.98 0.94 240 3 0.90 0.98 0.94 239 4 0.96 0.98 0.97 239 5 0.94 0.97 0.96 239 6 0.98 0.98 0.98 239 7 0.84 0.99 0.91 240 8 0.99 0.87 0.93 239 9 0.95 0.98 0.96 239 10 0.97 0.94 0.96 240 11 0.95 0.98 0.97 240 12 0.92 0.99 0.95 240 13 0.95 0.96 0.96 239 14 0.94 0.94 0.94 236 15 0.94 0.97 0.96 240 16 0.94 0.98 0.96 240 17 0.97 0.99 0.98 240 18 0.94 0.93 0.94 240 19 1.00 0.95 0.98 239 20 0.96 0.98 0.97 240 21 0.98 0.91 0.95 239 22 0.97 0.95 0.96 239 23 1.00 0.97 0.98 239 24 0.94 0.98 0.96 240 25 0.98 0.98 0.98 237 26 0.91 1.00 0.95 239 27 0.91 0.96 0.93 239 28 0.97 0.88 0.92 239 29 1.00 0.98 0.99 240 30 0.99 0.94 0.96 239 31 0.97 0.97 0.97 237 32 0.94 0.98 0.96 236 33 0.94 0.96 0.95 239 34 0.98 0.99 0.98 239 35 0.99 0.98 0.99 240 36 0.96 0.92 0.94 239 37 1.00 0.93 0.96 240 38 0.96 0.99 0.98 238 39 0.98 0.97 0.97 238 40 0.92 0.90 0.91 240 41 0.96 0.97 0.96 237 42 0.98 0.97 0.97 240 43 0.95 0.96 0.95 239 44 0.97 0.96 0.97 239 45 0.95 0.94 0.95 239 46 0.93 0.96 0.94 232 47 0.98 0.91 0.94 237 48 0.95 0.97 0.96 239 49 0.97 0.80 0.88 226 50 0.90 0.95 0.92 240 51 0.98 0.99 0.99 236 52 0.96 0.90 0.93 240 53 0.99 0.96 0.97 235 54 0.97 0.93 0.95 240 55 0.99 0.98 0.99 240 56 0.97 0.92 0.95 239 57 0.97 0.97 0.97 239 58 1.00 0.98 0.99 238 59 0.92 0.98 0.95 240 60 0.99 0.90 0.94 240 61 1.00 0.99 0.99 238 62 0.92 0.95 0.94 239 63 0.92 0.98 0.95 238 64 0.98 0.92 0.95 240 65 0.99 0.92 0.95 239 66 0.98 0.99 0.99 240 67 0.95 0.95 0.95 240 68 0.96 0.98 0.97 239 69 0.97 0.97 0.97 239 70 0.98 0.94 0.96 240 71 0.91 0.96 0.93 239 72 0.98 0.97 0.97 239 73 0.99 0.89 0.94 240 74 0.97 0.99 0.98 237 75 0.89 0.97 0.92 240 76 0.97 0.96 0.97 241 77 0.89 0.91 0.90 240 78 1.00 0.89 0.94 239 79 0.90 0.98 0.94 239 80 0.89 0.96 0.92 240 81 0.96 0.71 0.81 225 82 0.95 1.00 0.97 238 83 0.67 0.96 0.79 239 84 0.97 0.85 0.91 240 85 0.95 0.98 0.96 239 86 0.99 0.93 0.96 240 87 0.98 0.91 0.94 239 88 0.97 0.97 0.97 240 89 0.97 0.94 0.95 239 90 0.97 0.96 0.96 236 91 0.91 0.97 0.94 239 92 0.98 0.95 0.96 240 93 0.98 0.97 0.98 239 94 0.98 0.95 0.97 240 95 0.98 0.99 0.99 239 96 0.95 0.97 0.96 240 97 0.98 0.97 0.98 239 98 0.95 0.98 0.97 237 99 0.97 0.96 0.97 239 avg / total 0.96 0.95 0.95 23868 [[237 0 0 ..., 0 0 0] [ 0 228 0 ..., 0 0 0] [ 0 0 235 ..., 0 0 0] ..., [ 0 0 0 ..., 233 0 0] [ 0 0 0 ..., 0 233 0] [ 0 0 0 ..., 0 0 230]]
更多模型见:http://www.cnblogs.com/bonelee/p/8978060.html
将上述模型保存并给TensorFlow使用,仅仅在保存模型前加del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:],仅仅保留inference时候的OP(如果需要retrain注意),如下:
model = get_model(width, height, classes=100) filename = 'cnn_handwrite-acc0.8.tflearn' # try to load model and resume training #try: # model.load(filename) # print("Model loaded OK. Resume training!") #except: # pass # Initialize our callback with desired accuracy threshold. early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.8) try: model.fit(trainX, trainY, validation_set=(testX, testY), n_epoch=500, shuffle=True, snapshot_epoch=True, # Snapshot (save & evaluate) model every epoch. show_metric=True, batch_size=32, callbacks=early_stopping_cb, run_id='cnn_handwrite') except StopIteration as e: print("OK, stop iterate!Good!") model.save(filename) del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:] """ # print op name with tf.Session() as sess: init_op = tf.initialize_all_variables() sess.run(init_op) for v in sess.graph.get_operations(): print(v.name) """ filename = 'cnn_handwrite-acc0.8.infer.tflearn' model.save(filename)
参考:http://www.cnblogs.com/bonelee/p/8445261.html 里的脚本,修改:
output_node_names = "FullyConnected/Softmax"
通常为:
output_node_names = "FullyConnected/Softmax"
或者
output_node_names = "FullyConnected_1/Softmax"
output_node_names = "FullyConnected_2/Softmax"
就看你使用的全连接层数,上面分别是1,2,3层。
最后,tensorflow里的使用:
def inference(image): print('inference') temp_image = Image.open(image).convert('L') temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS) temp_image = np.asarray(temp_image) / 255.0 temp_image = temp_image.reshape([-1, 32, 32, 1]) from tensorflow.python.platform import gfile with tf.Graph().as_default(): output_graph_def = tf.GraphDef() with open("frozen_model.pb", "rb") as f: output_graph_def.ParseFromString(f.read()) tensors = tf.import_graph_def(output_graph_def, name="") #print tensors with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) op = sess.graph.get_operations() """ for m in op: print(m.values()) """ op = sess.graph.get_tensor_by_name("FullyConnected_1/Softmax:0") input_tensor = sess.graph.get_tensor_by_name('InputData/X:0') probs = sess.run(op,feed_dict = {input_tensor:temp_image}) print probs result = [] for word in probs: result.append(np.argsort(-word)[:3]) return result def main(_): image_path = './data/test/00098/104405.png' #image_path = '../data/00010/17724.png' final_predict_val = inference(image_path) logger.info('the result info label {0} predict index {1}'.format(98, final_predict_val))
一般,输入TensorFlow input name默认为InputData/X,但只是op,如果要tensor的话,加上数字0,也就是:InputData/X:0
同理,FullyConnected_1/Softmax:0。
最后预测效果:
[[ 8.42533936e-08 1.60850794e-11 2.60133332e-10 2.42555542e-14 4.96124599e-08 4.45251297e-15 3.98175590e-11 1.64476592e-11 7.03968351e-13 5.42319011e-12 8.55469237e-11 4.91866422e-13 1.77282828e-07 4.05237593e-10 3.13049003e-10 1.34780919e-11 2.05803235e-06 2.87827305e-07 1.47789994e-12 2.53391891e-11 3.77086790e-13 2.02639586e-10 9.03167027e-13 3.96698889e-11 1.30850096e-11 5.71980917e-12 3.03487374e-11 2.04132298e-14 6.25303683e-13 1.46122332e-07 2.17450633e-07 1.69623715e-09 6.80857757e-12 2.52643609e-13 6.56771096e-11 8.55152287e-16 1.34496514e-09 1.22644633e-06 1.12011307e-07 7.93476283e-05 8.24334611e-12 4.77531155e-14 9.39397757e-13 2.38438267e-14 2.11416329e-10 5.54395712e-08 2.30046147e-12 2.63584043e-10 4.70621564e-16 5.14432724e-12 6.42602327e-09 1.62485829e-13 7.39078274e-08 3.19146315e-12 5.25887156e-09 1.35877786e-13 1.39127886e-13 2.11998293e-13 9.09501097e-09 9.46486750e-07 2.47498733e-09 2.74523763e-12 1.02716433e-14 1.02069058e-17 3.09356682e-16 1.51022904e-15 9.34333665e-13 2.62195051e-14 3.38079781e-16 7.43019903e-13 1.92409091e-13 3.86611994e-13 2.61276265e-12 1.07969211e-09 1.30814548e-09 2.44038188e-14 9.79275905e-13 1.41007803e-10 6.15137758e-12 2.08893070e-10 1.34751668e-14 2.76824767e-15 7.84100464e-16 7.70873335e-15 5.45704757e-12 3.69386271e-18 2.06012223e-13 1.62567273e-14 1.54544960e-03 2.05292008e-06 1.31726174e-09 7.04993663e-09 4.11338266e-03 3.19344110e-07 3.96519717e-05 2.26919351e-12 2.39114349e-12 2.35558744e-07 9.94213998e-01 1.10125060e-11]] the result info label 98 predict index [array([98, 92, 88])]