Apriori算法实例
Apriori算法与实例
R. Agrawal 和 R. Srikant于1994年在文献【2】中提出了Apriori算法,该算法的描述如下:
下面是一个具体的例子,最开始数据库里有4条交易,{A、C、D},{B、C、E},{A、B、C、E},{B、E},使用min_support=2作为支持度阈值,最后我们筛选出来的频繁集为{B、C、E}。
上述例子中,最值得我们从L2到C的这一步。这其实就是在执行伪代码中第一个蓝色框条所标注的地方:C,具体来说在Apriori算法中,它所使用的策略如下:
可见生成策略由两部分组成,首先是self-joining部分。例如,假设我们有一个L3={abc, abd, acd, ace, bcd}(注意这已经是排好序的}。选择两个itemsets,它们满足条件:前k-1个item都相同,但最后一个item不同,把它们组成一个新的C的项集c。如下图所示,{abc}和{abd}组成{abcd},{acd}和{ace}组成{acde}。生成策略的第二部分是pruning。对于一个位于C中的项集c,s是c的大小为k的子集,如果s不存在于Lk中,则将c从C中删除。如下图所示,因为{acde}的子集{cde}并不存在于L3中,所以我们将{acde}从C中删除。最后得到的C,仅包含一个项集{abcd}。
回到之前的例子,从L2到C的这一步,我们就只能获得{B、C、E}。以上便是Apriori算法的最核心思想。
from:https://blog.csdn.net/baimafujinji/article/details/53456931
标签:
leetcode
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」