leetcode 733. Flood Fill
An image
is represented by a 2-D array of integers, each integer representing the pixel value of the image (from 0 to 65535).
Given a coordinate (sr, sc)
representing the starting pixel (row and column) of the flood fill, and a pixel value newColor
, "flood fill" the image.
To perform a "flood fill", consider the starting pixel, plus any pixels connected 4-directionally to the starting pixel of the same color as the starting pixel, plus any pixels connected 4-directionally to those pixels (also with the same color as the starting pixel), and so on. Replace the color of all of the aforementioned pixels with the newColor.
At the end, return the modified image.
Example 1:
Input: image = [[1,1,1],[1,1,0],[1,0,1]] sr = 1, sc = 1, newColor = 2 Output: [[2,2,2],[2,2,0],[2,0,1]] Explanation: From the center of the image (with position (sr, sc) = (1, 1)), all pixels connected by a path of the same color as the starting pixel are colored with the new color. Note the bottom corner is not colored 2, because it is not 4-directionally connected to the starting pixel.
Note:
- The length of
image
andimage[0]
will be in the range[1, 50]
. - The given starting pixel will satisfy
0 <= sr < image.length
and0 <= sc < image[0].length
. - The value of each color in
image[i][j]
andnewColor
will be an integer in[0, 65535]
.
其实就是:
从给定坐标开始,将与该点相邻 并且值也相同 的点的 值都换成newColor
class Solution(object): def floodFill(self, image, sr, sc, newColor): """ :type image: List[List[int]] :type sr: int :type sc: int :type newColor: int :rtype: List[List[int]] """ old_color= image[sr][sc] row = len(image) col = len(image[0]) def dfs(img, i, j): if i<0 or i>=row or j<0 or j>=col or img[i][j] != old_color: return img[i][j] = newColor dfs(img, i+1, j) dfs(img, i-1, j) dfs(img, i, j-1) dfs(img, i, j+1) if old_color != newColor: dfs(image, sr, sc) return image
BFS:
class Solution(object): def floodFill(self, image, sr, sc, newColor): """ :type image: List[List[int]] :type sr: int :type sc: int :type newColor: int :rtype: List[List[int]] """ old_color= image[sr][sc] if old_color == newColor: return image row = len(image) col = len(image[0]) q = [(sr, sc)] image[sr][sc] = newColor while q: q2 = [] for i,j in q: if i-1>=0 and image[i-1][j]==old_color: q2.append((i-1, j)) image[i-1][j] = newColor if i+1<row and image[i+1][j]==old_color: q2.append((i+1, j)) image[i+1][j] = newColor if j-1>=0 and image[i][j-1]==old_color: q2.append((i, j-1)) image[i][j-1] = newColor if j+1<col and image[i][j+1]==old_color: q2.append((i, j+1)) image[i][j+1] = newColor q = q2 return image
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」