CNN 文本分类模型优化经验——关键点:加卷积层和FC可以提高精度,在FC前加BN可以加快收敛,有时候可以提高精度,FC后加dropout,conv_1d的input维度加大可以提高精度,但是到256会出现OOM。
network = tflearn.input_data(shape=[None, max_len], name='input') network = tflearn.embedding(network, input_dim=volcab_size, output_dim=32) network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_1d(network, 2) network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_1d(network, 2) #network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") #network = max_pool_1d(network, 2) network = batch_normalization(network) #network = fully_connected(network, 512, activation='relu') #network = dropout(network, 0.5) network = fully_connected(network, 64, activation='relu') network = dropout(network, 0.5) network = fully_connected(network, 2, activation='softmax')
迭代一次,acc是98.5%多一点。
如果使用:
# 关于一维CNN的网络,例子较少 # https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py # Building convolutional network network = input_data(shape=[None, 100], name='input') network = tflearn.embedding(network, input_dim=10000, output_dim=128) branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2") branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2") branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2") network = merge([branch1, branch2, branch3], mode='concat', axis=1) network = tf.expand_dims(network, 2) network = global_max_pool(network) network = dropout(network, 0.5) network = fully_connected(network, 2, activation='softmax') network = regression(network, optimizer='adam', learning_rate=0.001, loss='categorical_crossentropy', name='target') # Training model = tflearn.DNN(network, tensorboard_verbose=0)
acc是95%多一点点。
使用类似 vgg的模型, https://github.com/AhmetHamzaEmra/tflearn/blob/master/examples/images/VGG19.py
network = tflearn.input_data(shape=[None, max_len], name='input') network = tflearn.embedding(network, input_dim=volcab_size, output_dim=64) network = conv_1d(network, 64, 3, activation='relu') network = conv_1d(network, 64, 3, activation='relu') network = max_pool_1d(network, 2, strides=2) network = conv_1d(network, 128, 3, activation='relu') network = conv_1d(network, 128, 3, activation='relu') network = max_pool_1d(network, 2, strides=2) network = conv_1d(network, 256, 3, activation='relu') network = conv_1d(network, 256, 3, activation='relu') network = conv_1d(network, 256, 3, activation='relu') network = max_pool_1d(network, 2, strides=2) network = batch_normalization(network) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.5) network = fully_connected(network, 2, activation='softmax')
acc是98.5%多一点,稍微比第一种模型高,但是训练时间太长。
其他的,本质上都是加卷积层或者FC:
。。。
network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_1d(network, 2) network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_1d(network, 2) network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_1d(network, 2)
。。。
标签:
深度学习
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-03-09 wukong引擎源码分析之索引——part 1 倒排列表本质是有序数组存储
2017-03-09 BDB c++例子,从源码编译到运行
2017-03-09 Linux的nm查看动态和静态库中的符号