神经网络的结构汇总——tflearn

一些先进的网络结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py
# -*- coding: utf-8 -*-
 
""" Deep Neural Network for MNIST dataset classification task using
a highway network
References:
Links:
    [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
    [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387)
"""
from __future__ import division, print_function, absolute_import
 
import tflearn
 
# Data loading and preprocessing
import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)
 
# Building deep neural network
input_layer = tflearn.input_data(shape=[None, 784])
dense1 = tflearn.fully_connected(input_layer, 64, activation='elu',
                                 regularizer='L2', weight_decay=0.001)
                  
                  
#install a deep network of highway layers
highway = dense1                             
for i in range(10):
    highway = tflearn.highway(highway, 64, activation='elu',
                              regularizer='L2', weight_decay=0.001, transform_dropout=0.8)
                               
                               
softmax = tflearn.fully_connected(highway, 10, activation='softmax')
 
# Regression using SGD with learning rate decay and Top-3 accuracy
sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
top_k = tflearn.metrics.Top_k(3)
net = tflearn.regression(softmax, optimizer=sgd, metric=top_k,
                         loss='categorical_crossentropy')
 
# Training
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=20, validation_set=(testX, testY),
show_metric=True, run_id="highway_dense_model")
 
# https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py
from __future__ import division, print_function, absolute_import
 
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import highway_conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization, batch_normalization
from tflearn.layers.estimator import regression
 
# Data loading and preprocessing
import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])
 
# Building convolutional network
network = input_data(shape=[None, 28, 28, 1], name='input')
#highway convolutions with pooling and dropout
for i in range(3):
    for j in [3, 2, 1]:
        network = highway_conv_2d(network, 16, j, activation='elu')
    network = max_pool_2d(network, 2)
    network = batch_normalization(network)
     
network = fully_connected(network, 128, activation='elu')
network = fully_connected(network, 256, activation='elu')
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
                     loss='categorical_crossentropy', name='target')
 
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=20, validation_set=(testX, testY),
show_metric=True, run_id='convnet_highway_mnist')
 
# https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py
from __future__ import division, print_function, absolute_import
 
import tflearn
import tflearn.data_utils as du
 
# Data loading and preprocessing
import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])
X, mean = du.featurewise_zero_center(X)
testX = du.featurewise_zero_center(testX, mean)
 
# Building Residual Network
net = tflearn.input_data(shape=[None, 28, 28, 1])
net = tflearn.conv_2d(net, 64, 3, activation='relu', bias=False)
# Residual blocks
net = tflearn.residual_bottleneck(net, 3, 16, 64)
net = tflearn.residual_bottleneck(net, 1, 32, 128, downsample=True)
net = tflearn.residual_bottleneck(net, 2, 32, 128)
net = tflearn.residual_bottleneck(net, 1, 64, 256, downsample=True)
net = tflearn.residual_bottleneck(net, 2, 64, 256)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, 10, activation='softmax')
net = tflearn.regression(net, optimizer='momentum',
                         loss='categorical_crossentropy',
                         learning_rate=0.1)
# Training
model = tflearn.DNN(net, checkpoint_path='model_resnet_mnist',
                    max_checkpoints=10, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=100, validation_set=(testX, testY),
show_metric=True, batch_size=256, run_id='resnet_mnist')
 
 
# https://github.com/tflearn/tflearn/blob/master/examples/images/resnext_cifar10.py
from __future__ import division, print_function, absolute_import
 
import tflearn
 
# Residual blocks
# 32 layers: n=5, 56 layers: n=9, 110 layers: n=18
n = 5
 
# Data loading
from tflearn.datasets import cifar10
(X, Y), (testX, testY) = cifar10.load_data()
Y = tflearn.data_utils.to_categorical(Y)
testY = tflearn.data_utils.to_categorical(testY)
 
# Real-time data preprocessing
img_prep = tflearn.ImagePreprocessing()
img_prep.add_featurewise_zero_center(per_channel=True)
 
# Real-time data augmentation
img_aug = tflearn.ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_crop([32, 32], padding=4)
 
# Building Residual Network
net = tflearn.input_data(shape=[None, 32, 32, 3],
                         data_preprocessing=img_prep,
                         data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.resnext_block(net, n, 16, 32)
net = tflearn.resnext_block(net, 1, 32, 32, downsample=True)
net = tflearn.resnext_block(net, n-1, 32, 32)
net = tflearn.resnext_block(net, 1, 64, 32, downsample=True)
net = tflearn.resnext_block(net, n-1, 64, 32)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, 10, activation='softmax')
opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=opt,
                         loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, checkpoint_path='model_resnext_cifar10',
                    max_checkpoints=10, tensorboard_verbose=0,
                    clip_gradients=0.)
 
model.fit(X, Y, n_epoch=200, validation_set=(testX, testY),
          snapshot_epoch=False, snapshot_step=500,
          show_metric=True, batch_size=128, shuffle=True,
run_id='resnext_cifar10')

 

 

一维的,后续优化网络结构使用:

复制代码
# 关于一维CNN的网络,例子较少
# https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py
# Building convolutional network
network = input_data(shape=[None, 100], name='input')
network = tflearn.embedding(network, input_dim=10000, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
                     loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)


# http://codegists.com/snippet/python/specificpy_lastzactionhero_python
# Specify shape of the data, image prep
network = input_data(shape=[None, 52, 64],
                     data_preprocessing=img_prep,
                     data_augmentation=img_aug)
 
# conv_2d incoming, nb_filter, filter_size
# incoming: Tensor. Incoming 4-D Tensor.
# nb_filter: int. The number of convolutional filters. # WHAT IS THIS?
# filter_size: 'intor list ofints`. Size of filters.   # WHAT IS THIS?
network = conv_1d(network, 512, 3, activation='relu')
 
# (incoming, kernel_size)
# incoming: Tensor. Incoming 4-D Layer.
# kernel_size: 'intor list ofints`. Pooling kernel size.
network = max_pool_1d(network, 2)
 
network = conv_1d(network, 64, 3, activation='relu')
network = conv_1d(network, 64, 3, activation='relu')
network = max_pool_1d(network, 2)
 
network = fully_connected(network, 512, activation='relu')
 
network = dropout(network, 0.5)
 
network = fully_connected(network, 4, activation='softmax')
 
network = regression(network, optimizer='adam',
                     loss='categorical_crossentropy',
                     learning_rate=0.0003)

model = tflearn.DNN(network, tensorboard_verbose=0)


# https://github.com/gonzalolc/CharacterLevel-CNN-TFLearn/blob/master/train.py
# Building convolutional network
network = input_data(shape=[None, 1024], name='input')
network = tflearn.embedding(network, input_dim=71, output_dim=256)
network = conv_1d(network, 256, 7, padding='valid', scope='conv1', activation='relu')
network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_1')
network = conv_1d(network, 256, 7, padding='valid', scope='conv2', activation='relu')
network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_2')
network = conv_1d(network, 256, 3, padding='valid', scope='conv3', activation='relu')
network = conv_1d(network, 256, 3, padding='valid', scope='conv4', activation='relu')
network = conv_1d(network, 256, 3, padding='valid', scope='conv5', activation='relu')
network = conv_1d(network, 256, 3, padding='valid', scope='conv6', activation='relu')
network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_Last')
network = tflearn.fully_connected(network, 1024, name='Fullyconected_0')
network = dropout(network, 0.5)
network = tflearn.fully_connected(network, 1024, name='Fullyconected_1')
network = dropout(network, 0.5)
network = fully_connected(network, 14, activation='softmax', name='FullyConected_Last')
network = regression(network, optimizer='adam', loss='categorical_crossentropy', name='target')


# Training
model = tflearn.DNN(network,tensorboard_dir='runs', checkpoint_path='checkpoints/Checkpoints', best_checkpoint_path='bestcheckpoints/BestCheckpoint', best_val_accuracy=0.94, tensorboard_verbose=2)



# https://github.com/jrzaurin/Text-Classification-with-Tensorflow/blob/master/pretrained_word_embedding_TF_tflearn.py
    net = input_data(shape=[None,MAX_SEQUENCE_LENGTH], name='input')
    net = embedding(net, input_dim=MAX_NB_WORDS, output_dim=EMBEDDING_DIM, trainable=False, name="EmbeddingLayer")
    net = conv_1d(net, 128, 5, 1, activation='relu', padding="valid")
    # one could add regularization as:
    # net = conv_1d(net, 128, 5, 1, activation='relu', regularizer="L2", padding="valid")
    net = max_pool_1d(net, 5, padding="valid")
    net = batch_normalization(net)
    net = conv_1d(net, 128, 5, activation='relu', padding="valid")
    net = max_pool_1d(net, 5, padding="valid")
    net = batch_normalization(net)
    net = conv_1d(net, 128, 5, activation='relu', padding="valid")
    net = max_pool_1d(net, 35)
    net = batch_normalization(net)
    net = fully_connected(net, 128, activation='relu')
    net = dropout(net, 0.5)
    net = fully_connected(net, y_train.shape[1], activation='softmax')
    net = regression(net, optimizer='adam', learning_rate=0.01,
                         loss='categorical_crossentropy', name='target')
    model = tflearn.DNN(net, tensorboard_verbose=0)

    
复制代码

二维的tflearn官方的例子就非常多,到时候一维的可以借鉴他们的结构设计:

复制代码
#https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py
    # Building a network with 2 optimizers
    g = tflearn.input_data(shape=[None, 2])
    # Nand operator definition
    g_nand = tflearn.fully_connected(g, 32, activation='linear')
    g_nand = tflearn.fully_connected(g_nand, 32, activation='linear')
    g_nand = tflearn.fully_connected(g_nand, 1, activation='sigmoid')
    g_nand = tflearn.regression(g_nand, optimizer='sgd',
                                learning_rate=2.,
                                loss='binary_crossentropy')
    # Or operator definition
    g_or = tflearn.fully_connected(g, 32, activation='linear')
    g_or = tflearn.fully_connected(g_or, 32, activation='linear')
    g_or = tflearn.fully_connected(g_or, 1, activation='sigmoid')
    g_or = tflearn.regression(g_or, optimizer='sgd',
                              learning_rate=2.,
                              loss='binary_crossentropy')
    # XOR merging Nand and Or operators
    g_xor = tflearn.merge([g_nand, g_or], mode='elemwise_mul')

    # Training
m = tflearn.DNN(g_xor)


#https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py
# Building deep neural network
input_layer = tflearn.input_data(shape=[None, 784])
dense1 = tflearn.fully_connected(input_layer, 64, activation='tanh',
                                 regularizer='L2', weight_decay=0.001)
dropout1 = tflearn.dropout(dense1, 0.8)
dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh',
                                 regularizer='L2', weight_decay=0.001)
dropout2 = tflearn.dropout(dense2, 0.8)
softmax = tflearn.fully_connected(dropout2, 10, activation='softmax')

# Regression using SGD with learning rate decay and Top-3 accuracy
sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
top_k = tflearn.metrics.Top_k(3)
net = tflearn.regression(softmax, optimizer=sgd, metric=top_k,
                         loss='categorical_crossentropy')

# Training
model = tflearn.DNN(net, tensorboard_verbose=0)


# https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py

# Redefinition of convnet_cifar10 network
network = input_data(shape=[None, 32, 32, 3])
network = conv_2d(network, 32, 3, activation='relu')
network = max_pool_2d(network, 2)
network = dropout(network, 0.75)
network = conv_2d(network, 64, 3, activation='relu')
network = conv_2d(network, 64, 3, activation='relu')
network = max_pool_2d(network, 2)
network = dropout(network, 0.5)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.5)
# Finetuning Softmax layer (Setting restore=False to not restore its weights)
softmax = fully_connected(network, num_classes, activation='softmax', restore=False)
regression = regression(softmax, optimizer='adam',
                        loss='categorical_crossentropy',
                        learning_rate=0.001)

model = tflearn.DNN(regression, checkpoint_path='model_finetuning',
                    max_checkpoints=3, tensorboard_verbose=0)
# Load pre-existing model, restoring all weights, except softmax layer ones

# https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py
# Network building
net = tflearn.input_data([None, 100])
# Masking is not required for embedding, sequence length is computed prior to
# the embedding op and assigned as 'seq_length' attribute to the returned Tensor.
net = tflearn.embedding(net, input_dim=10000, output_dim=128)
net = tflearn.lstm(net, 128, dropout=0.8, dynamic=True)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, tensorboard_verbose=0)

# https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py
network = input_data(shape=[None, 227, 227, 3])
conv1_7_7 = conv_2d(network, 64, 7, strides=2, activation='relu', name='conv1_7_7_s2')
pool1_3_3 = max_pool_2d(conv1_7_7, 3, strides=2)
pool1_3_3 = local_response_normalization(pool1_3_3)
conv2_3_3_reduce = conv_2d(pool1_3_3, 64, 1, activation='relu', name='conv2_3_3_reduce')
conv2_3_3 = conv_2d(conv2_3_3_reduce, 192, 3, activation='relu', name='conv2_3_3')
conv2_3_3 = local_response_normalization(conv2_3_3)
pool2_3_3 = max_pool_2d(conv2_3_3, kernel_size=3, strides=2, name='pool2_3_3_s2')

# 3a
inception_3a_1_1 = conv_2d(pool2_3_3, 64, 1, activation='relu', name='inception_3a_1_1')
inception_3a_3_3_reduce = conv_2d(pool2_3_3, 96, 1, activation='relu', name='inception_3a_3_3_reduce')
inception_3a_3_3 = conv_2d(inception_3a_3_3_reduce, 128, filter_size=3,  activation='relu', name='inception_3a_3_3')
inception_3a_5_5_reduce = conv_2d(pool2_3_3, 16, filter_size=1, activation='relu', name='inception_3a_5_5_reduce')
inception_3a_5_5 = conv_2d(inception_3a_5_5_reduce, 32, filter_size=5, activation='relu', name='inception_3a_5_5')
inception_3a_pool = max_pool_2d(pool2_3_3, kernel_size=3, strides=1, name='inception_3a_pool')
inception_3a_pool_1_1 = conv_2d(inception_3a_pool, 32, filter_size=1, activation='relu', name='inception_3a_pool_1_1')
inception_3a_output = merge([inception_3a_1_1, inception_3a_3_3, inception_3a_5_5, inception_3a_pool_1_1], mode='concat', axis=3)

# 3b
inception_3b_1_1 = conv_2d(inception_3a_output, 128, filter_size=1, activation='relu', name='inception_3b_1_1')
inception_3b_3_3_reduce = conv_2d(inception_3a_output, 128, filter_size=1, activation='relu', name='inception_3b_3_3_reduce')
inception_3b_3_3 = conv_2d(inception_3b_3_3_reduce, 192, filter_size=3, activation='relu', name='inception_3b_3_3')
inception_3b_5_5_reduce = conv_2d(inception_3a_output, 32, filter_size=1, activation='relu', name='inception_3b_5_5_reduce')
inception_3b_5_5 = conv_2d(inception_3b_5_5_reduce, 96, filter_size=5,  name='inception_3b_5_5')
inception_3b_pool = max_pool_2d(inception_3a_output, kernel_size=3, strides=1,  name='inception_3b_pool')
inception_3b_pool_1_1 = conv_2d(inception_3b_pool, 64, filter_size=1, activation='relu', name='inception_3b_pool_1_1')
inception_3b_output = merge([inception_3b_1_1, inception_3b_3_3, inception_3b_5_5, inception_3b_pool_1_1], mode='concat', axis=3, name='inception_3b_output')
pool3_3_3 = max_pool_2d(inception_3b_output, kernel_size=3, strides=2, name='pool3_3_3')

# 4a
inception_4a_1_1 = conv_2d(pool3_3_3, 192, filter_size=1, activation='relu', name='inception_4a_1_1')
inception_4a_3_3_reduce = conv_2d(pool3_3_3, 96, filter_size=1, activation='relu', name='inception_4a_3_3_reduce')
inception_4a_3_3 = conv_2d(inception_4a_3_3_reduce, 208, filter_size=3,  activation='relu', name='inception_4a_3_3')
inception_4a_5_5_reduce = conv_2d(pool3_3_3, 16, filter_size=1, activation='relu', name='inception_4a_5_5_reduce')
inception_4a_5_5 = conv_2d(inception_4a_5_5_reduce, 48, filter_size=5,  activation='relu', name='inception_4a_5_5')
inception_4a_pool = max_pool_2d(pool3_3_3, kernel_size=3, strides=1,  name='inception_4a_pool')
inception_4a_pool_1_1 = conv_2d(inception_4a_pool, 64, filter_size=1, activation='relu', name='inception_4a_pool_1_1')
inception_4a_output = merge([inception_4a_1_1, inception_4a_3_3, inception_4a_5_5, inception_4a_pool_1_1], mode='concat', axis=3, name='inception_4a_output')

# 4b
inception_4b_1_1 = conv_2d(inception_4a_output, 160, filter_size=1, activation='relu', name='inception_4a_1_1')
inception_4b_3_3_reduce = conv_2d(inception_4a_output, 112, filter_size=1, activation='relu', name='inception_4b_3_3_reduce')
inception_4b_3_3 = conv_2d(inception_4b_3_3_reduce, 224, filter_size=3, activation='relu', name='inception_4b_3_3')
inception_4b_5_5_reduce = conv_2d(inception_4a_output, 24, filter_size=1, activation='relu', name='inception_4b_5_5_reduce')
inception_4b_5_5 = conv_2d(inception_4b_5_5_reduce, 64, filter_size=5,  activation='relu', name='inception_4b_5_5')
inception_4b_pool = max_pool_2d(inception_4a_output, kernel_size=3, strides=1,  name='inception_4b_pool')
inception_4b_pool_1_1 = conv_2d(inception_4b_pool, 64, filter_size=1, activation='relu', name='inception_4b_pool_1_1')
inception_4b_output = merge([inception_4b_1_1, inception_4b_3_3, inception_4b_5_5, inception_4b_pool_1_1], mode='concat', axis=3, name='inception_4b_output')

# 4c
inception_4c_1_1 = conv_2d(inception_4b_output, 128, filter_size=1, activation='relu', name='inception_4c_1_1')
inception_4c_3_3_reduce = conv_2d(inception_4b_output, 128, filter_size=1, activation='relu', name='inception_4c_3_3_reduce')
inception_4c_3_3 = conv_2d(inception_4c_3_3_reduce, 256,  filter_size=3, activation='relu', name='inception_4c_3_3')
inception_4c_5_5_reduce = conv_2d(inception_4b_output, 24, filter_size=1, activation='relu', name='inception_4c_5_5_reduce')
inception_4c_5_5 = conv_2d(inception_4c_5_5_reduce, 64,  filter_size=5, activation='relu', name='inception_4c_5_5')
inception_4c_pool = max_pool_2d(inception_4b_output, kernel_size=3, strides=1)
inception_4c_pool_1_1 = conv_2d(inception_4c_pool, 64, filter_size=1, activation='relu', name='inception_4c_pool_1_1')
inception_4c_output = merge([inception_4c_1_1, inception_4c_3_3, inception_4c_5_5, inception_4c_pool_1_1], mode='concat', axis=3, name='inception_4c_output')

# 4d
inception_4d_1_1 = conv_2d(inception_4c_output, 112, filter_size=1, activation='relu', name='inception_4d_1_1')
inception_4d_3_3_reduce = conv_2d(inception_4c_output, 144, filter_size=1, activation='relu', name='inception_4d_3_3_reduce')
inception_4d_3_3 = conv_2d(inception_4d_3_3_reduce, 288, filter_size=3, activation='relu', name='inception_4d_3_3')
inception_4d_5_5_reduce = conv_2d(inception_4c_output, 32, filter_size=1, activation='relu', name='inception_4d_5_5_reduce')
inception_4d_5_5 = conv_2d(inception_4d_5_5_reduce, 64, filter_size=5,  activation='relu', name='inception_4d_5_5')
inception_4d_pool = max_pool_2d(inception_4c_output, kernel_size=3, strides=1,  name='inception_4d_pool')
inception_4d_pool_1_1 = conv_2d(inception_4d_pool, 64, filter_size=1, activation='relu', name='inception_4d_pool_1_1')
inception_4d_output = merge([inception_4d_1_1, inception_4d_3_3, inception_4d_5_5, inception_4d_pool_1_1], mode='concat', axis=3, name='inception_4d_output')

# 4e
inception_4e_1_1 = conv_2d(inception_4d_output, 256, filter_size=1, activation='relu', name='inception_4e_1_1')
inception_4e_3_3_reduce = conv_2d(inception_4d_output, 160, filter_size=1, activation='relu', name='inception_4e_3_3_reduce')
inception_4e_3_3 = conv_2d(inception_4e_3_3_reduce, 320, filter_size=3, activation='relu', name='inception_4e_3_3')
inception_4e_5_5_reduce = conv_2d(inception_4d_output, 32, filter_size=1, activation='relu', name='inception_4e_5_5_reduce')
inception_4e_5_5 = conv_2d(inception_4e_5_5_reduce, 128,  filter_size=5, activation='relu', name='inception_4e_5_5')
inception_4e_pool = max_pool_2d(inception_4d_output, kernel_size=3, strides=1,  name='inception_4e_pool')
inception_4e_pool_1_1 = conv_2d(inception_4e_pool, 128, filter_size=1, activation='relu', name='inception_4e_pool_1_1')
inception_4e_output = merge([inception_4e_1_1, inception_4e_3_3, inception_4e_5_5, inception_4e_pool_1_1], axis=3, mode='concat')
pool4_3_3 = max_pool_2d(inception_4e_output, kernel_size=3, strides=2, name='pool_3_3')

# 5a
inception_5a_1_1 = conv_2d(pool4_3_3, 256, filter_size=1, activation='relu', name='inception_5a_1_1')
inception_5a_3_3_reduce = conv_2d(pool4_3_3, 160, filter_size=1, activation='relu', name='inception_5a_3_3_reduce')
inception_5a_3_3 = conv_2d(inception_5a_3_3_reduce, 320, filter_size=3, activation='relu', name='inception_5a_3_3')
inception_5a_5_5_reduce = conv_2d(pool4_3_3, 32, filter_size=1, activation='relu', name='inception_5a_5_5_reduce')
inception_5a_5_5 = conv_2d(inception_5a_5_5_reduce, 128, filter_size=5,  activation='relu', name='inception_5a_5_5')
inception_5a_pool = max_pool_2d(pool4_3_3, kernel_size=3, strides=1,  name='inception_5a_pool')
inception_5a_pool_1_1 = conv_2d(inception_5a_pool, 128, filter_size=1, activation='relu', name='inception_5a_pool_1_1')
inception_5a_output = merge([inception_5a_1_1, inception_5a_3_3, inception_5a_5_5, inception_5a_pool_1_1], axis=3, mode='concat')

# 5b
inception_5b_1_1 = conv_2d(inception_5a_output, 384, filter_size=1, activation='relu', name='inception_5b_1_1')
inception_5b_3_3_reduce = conv_2d(inception_5a_output, 192, filter_size=1, activation='relu', name='inception_5b_3_3_reduce')
inception_5b_3_3 = conv_2d(inception_5b_3_3_reduce, 384,  filter_size=3, activation='relu', name='inception_5b_3_3')
inception_5b_5_5_reduce = conv_2d(inception_5a_output, 48, filter_size=1, activation='relu', name='inception_5b_5_5_reduce')
inception_5b_5_5 = conv_2d(inception_5b_5_5_reduce, 128, filter_size=5, activation='relu', name='inception_5b_5_5')
inception_5b_pool = max_pool_2d(inception_5a_output, kernel_size=3, strides=1,  name='inception_5b_pool')
inception_5b_pool_1_1 = conv_2d(inception_5b_pool, 128, filter_size=1, activation='relu', name='inception_5b_pool_1_1')
inception_5b_output = merge([inception_5b_1_1, inception_5b_3_3, inception_5b_5_5, inception_5b_pool_1_1], axis=3, mode='concat')
pool5_7_7 = avg_pool_2d(inception_5b_output, kernel_size=7, strides=1)
pool5_7_7 = dropout(pool5_7_7, 0.4)

# fc
loss = fully_connected(pool5_7_7, 17, activation='softmax')
network = regression(loss, optimizer='momentum',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)

# to train
model = tflearn.DNN(network, checkpoint_path='model_googlenet',
max_checkpoints=1, tensorboard_verbose=2)


# https://github.com/tflearn/tflearn/blob/master/examples/images/densenet.py
# Building Residual Network
net = tflearn.input_data(shape=[None, 32, 32, 3],
                         data_preprocessing=img_prep,
                         data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.densenet_block(net, nb_layers, k)
net = tflearn.densenet_block(net, nb_layers, k)
net = tflearn.densenet_block(net, nb_layers, k)
net = tflearn.global_avg_pool(net)

# Regression
net = tflearn.fully_connected(net, 10, activation='softmax')
opt = tflearn.Nesterov(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=opt,
                         loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, checkpoint_path='model_densenet_cifar10',
                    max_checkpoints=10, tensorboard_verbose=0,
clip_gradients=0.)

# https://github.com/AhmetHamzaEmra/tflearn/blob/master/examples/images/VGG19.py
# Building 'VGG Network'
input_layer = input_data(shape=[None, 224, 224, 3])

block1_conv1 = conv_2d(input_layer, 64, 3, activation='relu', name='block1_conv1')
block1_conv2 = conv_2d(block1_conv1, 64, 3, activation='relu', name='block1_conv2')
block1_pool = max_pool_2d(block1_conv2, 2, strides=2, name = 'block1_pool')

block2_conv1 = conv_2d(block1_pool, 128, 3, activation='relu', name='block2_conv1')
block2_conv2 = conv_2d(block2_conv1, 128, 3, activation='relu', name='block2_conv2')
block2_pool = max_pool_2d(block2_conv2, 2, strides=2, name = 'block2_pool')

block3_conv1 = conv_2d(block2_pool, 256, 3, activation='relu', name='block3_conv1')
block3_conv2 = conv_2d(block3_conv1, 256, 3, activation='relu', name='block3_conv2')
block3_conv3 = conv_2d(block3_conv2, 256, 3, activation='relu', name='block3_conv3')
block3_conv4 = conv_2d(block3_conv3, 256, 3, activation='relu', name='block3_conv4')
block3_pool = max_pool_2d(block3_conv4, 2, strides=2, name = 'block3_pool')

block4_conv1 = conv_2d(block3_pool, 512, 3, activation='relu', name='block4_conv1')
block4_conv2 = conv_2d(block4_conv1, 512, 3, activation='relu', name='block4_conv2')
block4_conv3 = conv_2d(block4_conv2, 512, 3, activation='relu', name='block4_conv3')
block4_conv4 = conv_2d(block4_conv3, 512, 3, activation='relu', name='block4_conv4')
block4_pool = max_pool_2d(block4_conv4, 2, strides=2, name = 'block4_pool')

block5_conv1 = conv_2d(block4_pool, 512, 3, activation='relu', name='block5_conv1')
block5_conv2 = conv_2d(block5_conv1, 512, 3, activation='relu', name='block5_conv2')
block5_conv3 = conv_2d(block5_conv2, 512, 3, activation='relu', name='block5_conv3')
block5_conv4 = conv_2d(block5_conv3, 512, 3, activation='relu', name='block5_conv4')
block4_pool = max_pool_2d(block5_conv4, 2, strides=2, name = 'block4_pool')
flatten_layer = tflearn.layers.core.flatten (block4_pool, name='Flatten')


fc1 = fully_connected(flatten_layer, 4096, activation='relu')
dp1 = dropout(fc1, 0.5)
fc2 = fully_connected(dp1, 4096, activation='relu')
dp2 = dropout(fc2, 0.5)

network = fully_connected(dp2, 1000, activation='rmsprop')

regression = tflearn.regression(network, optimizer='adam',
                            loss='categorical_crossentropy',
                            learning_rate=0.001)

model = tflearn.DNN(regression, checkpoint_path='vgg19',
tensorboard_dir="./logs")

#https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py
# Building 'VGG Network'
network = input_data(shape=[None, 224, 224, 3])

network = conv_2d(network, 64, 3, activation='relu')
network = conv_2d(network, 64, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 128, 3, activation='relu')
network = conv_2d(network, 128, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 256, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = fully_connected(network, 4096, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')

network = regression(network, optimizer='rmsprop',
                     loss='categorical_crossentropy',
                     learning_rate=0.0001)

# Training
model = tflearn.DNN(network, checkpoint_path='model_vgg',
max_checkpoints=1, tensorboard_verbose=0)

#https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py
# Building 'AlexNet'
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')
network = regression(network, optimizer='momentum',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)

# Training
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2)


#https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py
# Building convolutional network
network = input_data(shape=[None, 28, 28, 1], name='input')
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
                     loss='categorical_crossentropy', name='target')

# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
复制代码

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
在实际工作中优化过的结构(dga):
```python
 
def get_cnn_model(max_len, volcab_size=None, is_training=True):
    if volcab_size is None:
        volcab_size = 10240000
    # Building convolutional network
    network = tflearn.input_data(shape=[None, max_len], name='input')
    network = tflearn.embedding(network, input_dim=volcab_size, output_dim=32)
    network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
    network = max_pool_1d(network, 2)
    network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
    network = max_pool_1d(network, 2)
    #network = conv_1d(network, 64, 3, activation='relu', regularizer="L2")
    #network = max_pool_1d(network, 2)
    network = batch_normalization(network)
    #network = fully_connected(network, 512, activation='relu')
    #network = dropout(network, 0.5)
    network = fully_connected(network, 64, activation='relu')
    network = dropout(network, 0.5)
    network = fully_connected(network, 2, activation='softmax')
    #network = regression(network, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target')
    # Regression using SGD with learning rate decay and Top-3 accuracy
    sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
    #top_k = tflearn.metrics.Top_k(3)
    #network = regression(network, optimizer=sgd, metric=top_k, loss='categorical_crossentropy')
    network = regression(network, optimizer=sgd, loss='categorical_crossentropy')
    model = tflearn.DNN(network, tensorboard_verbose=0)
    return model
 
```
这是一个使用TFLearn库构建的一维卷积神经网络(1D CNN)模型。以下是这个模型的结构:
 
1. 输入层:接收长度为max_len的序列数据。
 
2. 嵌入层:将输入数据映射到一个32维的嵌入空间,词汇表大小为volcab_size。
 
3. 第一层卷积层:使用643大小的卷积核,激活函数为ReLU,正则化方法为L2。
 
4. 第一层最大池化层:池化窗口大小为2
 
5. 第二层卷积层:使用643大小的卷积核,激活函数为ReLU,正则化方法为L2。
 
6. 第二层最大池化层:池化窗口大小为2
 
7. 批量归一化层:对前一层的输出进行批量归一化。
 
8. 全连接层:有64个神经元,激活函数为ReLU。
 
9. Dropout层:Dropout比率为0.5,用于防止过拟合。
 
10. 输出层:有2个神经元,激活函数为softmax,用于分类。
 
11. 回归层:优化器为带学习率衰减的SGD,损失函数为交叉熵。
 
Input -> Embedding -> Conv1D -> MaxPool1D -> Conv1D -> MaxPool1D -> BatchNormalization -> FullyConnected -> Dropout -> FullyConnected -> Regression
这个模型的主要用途是文本分类或序列分类,因为它使用了嵌入层和一维卷积层。

  

dga应用过的!

posted @   bonelee  阅读(1901)  评论(6编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-03-08 Go语言的管道Channel用法
2017-03-08 mongodb给我们提供了fsync+lock机制把数据暴力的刷到硬盘上
2017-03-08 cassandra压缩——从文档看,本质上也应该是在做块压缩
2017-03-08 mongodb压缩——snappy、zlib块压缩,btree索引前缀压缩
2017-03-08 python cassandra 创建space table并写入和查询数据
2017-03-08 机器学习算法选择——特征提取
2017-03-08 机器学习的算法选择
点击右上角即可分享
微信分享提示