神经网络的结构汇总——tflearn
一些先进的网络结构:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | # https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py # -*- coding: utf-8 -*- """ Deep Neural Network for MNIST dataset classification task using a highway network References: Links: [MNIST Dataset] http://yann.lecun.com/exdb/mnist/ [https://arxiv.org/abs/1505.00387](https://arxiv.org/abs/1505.00387) """ from __future__ import division, print_function, absolute_import import tflearn # Data loading and preprocessing import tflearn.datasets.mnist as mnist X, Y, testX, testY = mnist.load_data(one_hot = True ) # Building deep neural network input_layer = tflearn.input_data(shape = [ None , 784 ]) dense1 = tflearn.fully_connected(input_layer, 64 , activation = 'elu' , regularizer = 'L2' , weight_decay = 0.001 ) #install a deep network of highway layers highway = dense1 for i in range ( 10 ): highway = tflearn.highway(highway, 64 , activation = 'elu' , regularizer = 'L2' , weight_decay = 0.001 , transform_dropout = 0.8 ) softmax = tflearn.fully_connected(highway, 10 , activation = 'softmax' ) # Regression using SGD with learning rate decay and Top-3 accuracy sgd = tflearn.SGD(learning_rate = 0.1 , lr_decay = 0.96 , decay_step = 1000 ) top_k = tflearn.metrics.Top_k( 3 ) net = tflearn.regression(softmax, optimizer = sgd, metric = top_k, loss = 'categorical_crossentropy' ) # Training model = tflearn.DNN(net, tensorboard_verbose = 0 ) model.fit(X, Y, n_epoch = 20 , validation_set = (testX, testY), show_metric = True , run_id = "highway_dense_model" ) # https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py from __future__ import division, print_function, absolute_import import tflearn from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import highway_conv_2d, max_pool_2d from tflearn.layers.normalization import local_response_normalization, batch_normalization from tflearn.layers.estimator import regression # Data loading and preprocessing import tflearn.datasets.mnist as mnist X, Y, testX, testY = mnist.load_data(one_hot = True ) X = X.reshape([ - 1 , 28 , 28 , 1 ]) testX = testX.reshape([ - 1 , 28 , 28 , 1 ]) # Building convolutional network network = input_data(shape = [ None , 28 , 28 , 1 ], name = 'input' ) #highway convolutions with pooling and dropout for i in range ( 3 ): for j in [ 3 , 2 , 1 ]: network = highway_conv_2d(network, 16 , j, activation = 'elu' ) network = max_pool_2d(network, 2 ) network = batch_normalization(network) network = fully_connected(network, 128 , activation = 'elu' ) network = fully_connected(network, 256 , activation = 'elu' ) network = fully_connected(network, 10 , activation = 'softmax' ) network = regression(network, optimizer = 'adam' , learning_rate = 0.01 , loss = 'categorical_crossentropy' , name = 'target' ) # Training model = tflearn.DNN(network, tensorboard_verbose = 0 ) model.fit(X, Y, n_epoch = 20 , validation_set = (testX, testY), show_metric = True , run_id = 'convnet_highway_mnist' ) # https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py from __future__ import division, print_function, absolute_import import tflearn import tflearn.data_utils as du # Data loading and preprocessing import tflearn.datasets.mnist as mnist X, Y, testX, testY = mnist.load_data(one_hot = True ) X = X.reshape([ - 1 , 28 , 28 , 1 ]) testX = testX.reshape([ - 1 , 28 , 28 , 1 ]) X, mean = du.featurewise_zero_center(X) testX = du.featurewise_zero_center(testX, mean) # Building Residual Network net = tflearn.input_data(shape = [ None , 28 , 28 , 1 ]) net = tflearn.conv_2d(net, 64 , 3 , activation = 'relu' , bias = False ) # Residual blocks net = tflearn.residual_bottleneck(net, 3 , 16 , 64 ) net = tflearn.residual_bottleneck(net, 1 , 32 , 128 , downsample = True ) net = tflearn.residual_bottleneck(net, 2 , 32 , 128 ) net = tflearn.residual_bottleneck(net, 1 , 64 , 256 , downsample = True ) net = tflearn.residual_bottleneck(net, 2 , 64 , 256 ) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu' ) net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, 10 , activation = 'softmax' ) net = tflearn.regression(net, optimizer = 'momentum' , loss = 'categorical_crossentropy' , learning_rate = 0.1 ) # Training model = tflearn.DNN(net, checkpoint_path = 'model_resnet_mnist' , max_checkpoints = 10 , tensorboard_verbose = 0 ) model.fit(X, Y, n_epoch = 100 , validation_set = (testX, testY), show_metric = True , batch_size = 256 , run_id = 'resnet_mnist' ) # https://github.com/tflearn/tflearn/blob/master/examples/images/resnext_cifar10.py from __future__ import division, print_function, absolute_import import tflearn # Residual blocks # 32 layers: n=5, 56 layers: n=9, 110 layers: n=18 n = 5 # Data loading from tflearn.datasets import cifar10 (X, Y), (testX, testY) = cifar10.load_data() Y = tflearn.data_utils.to_categorical(Y) testY = tflearn.data_utils.to_categorical(testY) # Real-time data preprocessing img_prep = tflearn.ImagePreprocessing() img_prep.add_featurewise_zero_center(per_channel = True ) # Real-time data augmentation img_aug = tflearn.ImageAugmentation() img_aug.add_random_flip_leftright() img_aug.add_random_crop([ 32 , 32 ], padding = 4 ) # Building Residual Network net = tflearn.input_data(shape = [ None , 32 , 32 , 3 ], data_preprocessing = img_prep, data_augmentation = img_aug) net = tflearn.conv_2d(net, 16 , 3 , regularizer = 'L2' , weight_decay = 0.0001 ) net = tflearn.resnext_block(net, n, 16 , 32 ) net = tflearn.resnext_block(net, 1 , 32 , 32 , downsample = True ) net = tflearn.resnext_block(net, n - 1 , 32 , 32 ) net = tflearn.resnext_block(net, 1 , 64 , 32 , downsample = True ) net = tflearn.resnext_block(net, n - 1 , 64 , 32 ) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu' ) net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, 10 , activation = 'softmax' ) opt = tflearn.Momentum( 0.1 , lr_decay = 0.1 , decay_step = 32000 , staircase = True ) net = tflearn.regression(net, optimizer = opt, loss = 'categorical_crossentropy' ) # Training model = tflearn.DNN(net, checkpoint_path = 'model_resnext_cifar10' , max_checkpoints = 10 , tensorboard_verbose = 0 , clip_gradients = 0. ) model.fit(X, Y, n_epoch = 200 , validation_set = (testX, testY), snapshot_epoch = False , snapshot_step = 500 , show_metric = True , batch_size = 128 , shuffle = True , run_id = 'resnext_cifar10' ) |
一维的,后续优化网络结构使用:
# 关于一维CNN的网络,例子较少 # https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py # Building convolutional network network = input_data(shape=[None, 100], name='input') network = tflearn.embedding(network, input_dim=10000, output_dim=128) branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2") branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2") branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2") network = merge([branch1, branch2, branch3], mode='concat', axis=1) network = tf.expand_dims(network, 2) network = global_max_pool(network) network = dropout(network, 0.5) network = fully_connected(network, 2, activation='softmax') network = regression(network, optimizer='adam', learning_rate=0.001, loss='categorical_crossentropy', name='target') # Training model = tflearn.DNN(network, tensorboard_verbose=0) # http://codegists.com/snippet/python/specificpy_lastzactionhero_python # Specify shape of the data, image prep network = input_data(shape=[None, 52, 64], data_preprocessing=img_prep, data_augmentation=img_aug) # conv_2d incoming, nb_filter, filter_size # incoming: Tensor. Incoming 4-D Tensor. # nb_filter: int. The number of convolutional filters. # WHAT IS THIS? # filter_size: 'intor list ofints`. Size of filters. # WHAT IS THIS? network = conv_1d(network, 512, 3, activation='relu') # (incoming, kernel_size) # incoming: Tensor. Incoming 4-D Layer. # kernel_size: 'intor list ofints`. Pooling kernel size. network = max_pool_1d(network, 2) network = conv_1d(network, 64, 3, activation='relu') network = conv_1d(network, 64, 3, activation='relu') network = max_pool_1d(network, 2) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.5) network = fully_connected(network, 4, activation='softmax') network = regression(network, optimizer='adam', loss='categorical_crossentropy', learning_rate=0.0003) model = tflearn.DNN(network, tensorboard_verbose=0) # https://github.com/gonzalolc/CharacterLevel-CNN-TFLearn/blob/master/train.py # Building convolutional network network = input_data(shape=[None, 1024], name='input') network = tflearn.embedding(network, input_dim=71, output_dim=256) network = conv_1d(network, 256, 7, padding='valid', scope='conv1', activation='relu') network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_1') network = conv_1d(network, 256, 7, padding='valid', scope='conv2', activation='relu') network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_2') network = conv_1d(network, 256, 3, padding='valid', scope='conv3', activation='relu') network = conv_1d(network, 256, 3, padding='valid', scope='conv4', activation='relu') network = conv_1d(network, 256, 3, padding='valid', scope='conv5', activation='relu') network = conv_1d(network, 256, 3, padding='valid', scope='conv6', activation='relu') network = max_pool_1d(network, 3, strides=3, name='Maxpool1D_Last') network = tflearn.fully_connected(network, 1024, name='Fullyconected_0') network = dropout(network, 0.5) network = tflearn.fully_connected(network, 1024, name='Fullyconected_1') network = dropout(network, 0.5) network = fully_connected(network, 14, activation='softmax', name='FullyConected_Last') network = regression(network, optimizer='adam', loss='categorical_crossentropy', name='target') # Training model = tflearn.DNN(network,tensorboard_dir='runs', checkpoint_path='checkpoints/Checkpoints', best_checkpoint_path='bestcheckpoints/BestCheckpoint', best_val_accuracy=0.94, tensorboard_verbose=2) # https://github.com/jrzaurin/Text-Classification-with-Tensorflow/blob/master/pretrained_word_embedding_TF_tflearn.py net = input_data(shape=[None,MAX_SEQUENCE_LENGTH], name='input') net = embedding(net, input_dim=MAX_NB_WORDS, output_dim=EMBEDDING_DIM, trainable=False, name="EmbeddingLayer") net = conv_1d(net, 128, 5, 1, activation='relu', padding="valid") # one could add regularization as: # net = conv_1d(net, 128, 5, 1, activation='relu', regularizer="L2", padding="valid") net = max_pool_1d(net, 5, padding="valid") net = batch_normalization(net) net = conv_1d(net, 128, 5, activation='relu', padding="valid") net = max_pool_1d(net, 5, padding="valid") net = batch_normalization(net) net = conv_1d(net, 128, 5, activation='relu', padding="valid") net = max_pool_1d(net, 35) net = batch_normalization(net) net = fully_connected(net, 128, activation='relu') net = dropout(net, 0.5) net = fully_connected(net, y_train.shape[1], activation='softmax') net = regression(net, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target') model = tflearn.DNN(net, tensorboard_verbose=0)
二维的tflearn官方的例子就非常多,到时候一维的可以借鉴他们的结构设计:
#https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py # Building a network with 2 optimizers g = tflearn.input_data(shape=[None, 2]) # Nand operator definition g_nand = tflearn.fully_connected(g, 32, activation='linear') g_nand = tflearn.fully_connected(g_nand, 32, activation='linear') g_nand = tflearn.fully_connected(g_nand, 1, activation='sigmoid') g_nand = tflearn.regression(g_nand, optimizer='sgd', learning_rate=2., loss='binary_crossentropy') # Or operator definition g_or = tflearn.fully_connected(g, 32, activation='linear') g_or = tflearn.fully_connected(g_or, 32, activation='linear') g_or = tflearn.fully_connected(g_or, 1, activation='sigmoid') g_or = tflearn.regression(g_or, optimizer='sgd', learning_rate=2., loss='binary_crossentropy') # XOR merging Nand and Or operators g_xor = tflearn.merge([g_nand, g_or], mode='elemwise_mul') # Training m = tflearn.DNN(g_xor) #https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py # Building deep neural network input_layer = tflearn.input_data(shape=[None, 784]) dense1 = tflearn.fully_connected(input_layer, 64, activation='tanh', regularizer='L2', weight_decay=0.001) dropout1 = tflearn.dropout(dense1, 0.8) dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh', regularizer='L2', weight_decay=0.001) dropout2 = tflearn.dropout(dense2, 0.8) softmax = tflearn.fully_connected(dropout2, 10, activation='softmax') # Regression using SGD with learning rate decay and Top-3 accuracy sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000) top_k = tflearn.metrics.Top_k(3) net = tflearn.regression(softmax, optimizer=sgd, metric=top_k, loss='categorical_crossentropy') # Training model = tflearn.DNN(net, tensorboard_verbose=0) # https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py # Redefinition of convnet_cifar10 network network = input_data(shape=[None, 32, 32, 3]) network = conv_2d(network, 32, 3, activation='relu') network = max_pool_2d(network, 2) network = dropout(network, 0.75) network = conv_2d(network, 64, 3, activation='relu') network = conv_2d(network, 64, 3, activation='relu') network = max_pool_2d(network, 2) network = dropout(network, 0.5) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.5) # Finetuning Softmax layer (Setting restore=False to not restore its weights) softmax = fully_connected(network, num_classes, activation='softmax', restore=False) regression = regression(softmax, optimizer='adam', loss='categorical_crossentropy', learning_rate=0.001) model = tflearn.DNN(regression, checkpoint_path='model_finetuning', max_checkpoints=3, tensorboard_verbose=0) # Load pre-existing model, restoring all weights, except softmax layer ones # https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py # Network building net = tflearn.input_data([None, 100]) # Masking is not required for embedding, sequence length is computed prior to # the embedding op and assigned as 'seq_length' attribute to the returned Tensor. net = tflearn.embedding(net, input_dim=10000, output_dim=128) net = tflearn.lstm(net, 128, dropout=0.8, dynamic=True) net = tflearn.fully_connected(net, 2, activation='softmax') net = tflearn.regression(net, optimizer='adam', learning_rate=0.001, loss='categorical_crossentropy') # Training model = tflearn.DNN(net, tensorboard_verbose=0) # https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py network = input_data(shape=[None, 227, 227, 3]) conv1_7_7 = conv_2d(network, 64, 7, strides=2, activation='relu', name='conv1_7_7_s2') pool1_3_3 = max_pool_2d(conv1_7_7, 3, strides=2) pool1_3_3 = local_response_normalization(pool1_3_3) conv2_3_3_reduce = conv_2d(pool1_3_3, 64, 1, activation='relu', name='conv2_3_3_reduce') conv2_3_3 = conv_2d(conv2_3_3_reduce, 192, 3, activation='relu', name='conv2_3_3') conv2_3_3 = local_response_normalization(conv2_3_3) pool2_3_3 = max_pool_2d(conv2_3_3, kernel_size=3, strides=2, name='pool2_3_3_s2') # 3a inception_3a_1_1 = conv_2d(pool2_3_3, 64, 1, activation='relu', name='inception_3a_1_1') inception_3a_3_3_reduce = conv_2d(pool2_3_3, 96, 1, activation='relu', name='inception_3a_3_3_reduce') inception_3a_3_3 = conv_2d(inception_3a_3_3_reduce, 128, filter_size=3, activation='relu', name='inception_3a_3_3') inception_3a_5_5_reduce = conv_2d(pool2_3_3, 16, filter_size=1, activation='relu', name='inception_3a_5_5_reduce') inception_3a_5_5 = conv_2d(inception_3a_5_5_reduce, 32, filter_size=5, activation='relu', name='inception_3a_5_5') inception_3a_pool = max_pool_2d(pool2_3_3, kernel_size=3, strides=1, name='inception_3a_pool') inception_3a_pool_1_1 = conv_2d(inception_3a_pool, 32, filter_size=1, activation='relu', name='inception_3a_pool_1_1') inception_3a_output = merge([inception_3a_1_1, inception_3a_3_3, inception_3a_5_5, inception_3a_pool_1_1], mode='concat', axis=3) # 3b inception_3b_1_1 = conv_2d(inception_3a_output, 128, filter_size=1, activation='relu', name='inception_3b_1_1') inception_3b_3_3_reduce = conv_2d(inception_3a_output, 128, filter_size=1, activation='relu', name='inception_3b_3_3_reduce') inception_3b_3_3 = conv_2d(inception_3b_3_3_reduce, 192, filter_size=3, activation='relu', name='inception_3b_3_3') inception_3b_5_5_reduce = conv_2d(inception_3a_output, 32, filter_size=1, activation='relu', name='inception_3b_5_5_reduce') inception_3b_5_5 = conv_2d(inception_3b_5_5_reduce, 96, filter_size=5, name='inception_3b_5_5') inception_3b_pool = max_pool_2d(inception_3a_output, kernel_size=3, strides=1, name='inception_3b_pool') inception_3b_pool_1_1 = conv_2d(inception_3b_pool, 64, filter_size=1, activation='relu', name='inception_3b_pool_1_1') inception_3b_output = merge([inception_3b_1_1, inception_3b_3_3, inception_3b_5_5, inception_3b_pool_1_1], mode='concat', axis=3, name='inception_3b_output') pool3_3_3 = max_pool_2d(inception_3b_output, kernel_size=3, strides=2, name='pool3_3_3') # 4a inception_4a_1_1 = conv_2d(pool3_3_3, 192, filter_size=1, activation='relu', name='inception_4a_1_1') inception_4a_3_3_reduce = conv_2d(pool3_3_3, 96, filter_size=1, activation='relu', name='inception_4a_3_3_reduce') inception_4a_3_3 = conv_2d(inception_4a_3_3_reduce, 208, filter_size=3, activation='relu', name='inception_4a_3_3') inception_4a_5_5_reduce = conv_2d(pool3_3_3, 16, filter_size=1, activation='relu', name='inception_4a_5_5_reduce') inception_4a_5_5 = conv_2d(inception_4a_5_5_reduce, 48, filter_size=5, activation='relu', name='inception_4a_5_5') inception_4a_pool = max_pool_2d(pool3_3_3, kernel_size=3, strides=1, name='inception_4a_pool') inception_4a_pool_1_1 = conv_2d(inception_4a_pool, 64, filter_size=1, activation='relu', name='inception_4a_pool_1_1') inception_4a_output = merge([inception_4a_1_1, inception_4a_3_3, inception_4a_5_5, inception_4a_pool_1_1], mode='concat', axis=3, name='inception_4a_output') # 4b inception_4b_1_1 = conv_2d(inception_4a_output, 160, filter_size=1, activation='relu', name='inception_4a_1_1') inception_4b_3_3_reduce = conv_2d(inception_4a_output, 112, filter_size=1, activation='relu', name='inception_4b_3_3_reduce') inception_4b_3_3 = conv_2d(inception_4b_3_3_reduce, 224, filter_size=3, activation='relu', name='inception_4b_3_3') inception_4b_5_5_reduce = conv_2d(inception_4a_output, 24, filter_size=1, activation='relu', name='inception_4b_5_5_reduce') inception_4b_5_5 = conv_2d(inception_4b_5_5_reduce, 64, filter_size=5, activation='relu', name='inception_4b_5_5') inception_4b_pool = max_pool_2d(inception_4a_output, kernel_size=3, strides=1, name='inception_4b_pool') inception_4b_pool_1_1 = conv_2d(inception_4b_pool, 64, filter_size=1, activation='relu', name='inception_4b_pool_1_1') inception_4b_output = merge([inception_4b_1_1, inception_4b_3_3, inception_4b_5_5, inception_4b_pool_1_1], mode='concat', axis=3, name='inception_4b_output') # 4c inception_4c_1_1 = conv_2d(inception_4b_output, 128, filter_size=1, activation='relu', name='inception_4c_1_1') inception_4c_3_3_reduce = conv_2d(inception_4b_output, 128, filter_size=1, activation='relu', name='inception_4c_3_3_reduce') inception_4c_3_3 = conv_2d(inception_4c_3_3_reduce, 256, filter_size=3, activation='relu', name='inception_4c_3_3') inception_4c_5_5_reduce = conv_2d(inception_4b_output, 24, filter_size=1, activation='relu', name='inception_4c_5_5_reduce') inception_4c_5_5 = conv_2d(inception_4c_5_5_reduce, 64, filter_size=5, activation='relu', name='inception_4c_5_5') inception_4c_pool = max_pool_2d(inception_4b_output, kernel_size=3, strides=1) inception_4c_pool_1_1 = conv_2d(inception_4c_pool, 64, filter_size=1, activation='relu', name='inception_4c_pool_1_1') inception_4c_output = merge([inception_4c_1_1, inception_4c_3_3, inception_4c_5_5, inception_4c_pool_1_1], mode='concat', axis=3, name='inception_4c_output') # 4d inception_4d_1_1 = conv_2d(inception_4c_output, 112, filter_size=1, activation='relu', name='inception_4d_1_1') inception_4d_3_3_reduce = conv_2d(inception_4c_output, 144, filter_size=1, activation='relu', name='inception_4d_3_3_reduce') inception_4d_3_3 = conv_2d(inception_4d_3_3_reduce, 288, filter_size=3, activation='relu', name='inception_4d_3_3') inception_4d_5_5_reduce = conv_2d(inception_4c_output, 32, filter_size=1, activation='relu', name='inception_4d_5_5_reduce') inception_4d_5_5 = conv_2d(inception_4d_5_5_reduce, 64, filter_size=5, activation='relu', name='inception_4d_5_5') inception_4d_pool = max_pool_2d(inception_4c_output, kernel_size=3, strides=1, name='inception_4d_pool') inception_4d_pool_1_1 = conv_2d(inception_4d_pool, 64, filter_size=1, activation='relu', name='inception_4d_pool_1_1') inception_4d_output = merge([inception_4d_1_1, inception_4d_3_3, inception_4d_5_5, inception_4d_pool_1_1], mode='concat', axis=3, name='inception_4d_output') # 4e inception_4e_1_1 = conv_2d(inception_4d_output, 256, filter_size=1, activation='relu', name='inception_4e_1_1') inception_4e_3_3_reduce = conv_2d(inception_4d_output, 160, filter_size=1, activation='relu', name='inception_4e_3_3_reduce') inception_4e_3_3 = conv_2d(inception_4e_3_3_reduce, 320, filter_size=3, activation='relu', name='inception_4e_3_3') inception_4e_5_5_reduce = conv_2d(inception_4d_output, 32, filter_size=1, activation='relu', name='inception_4e_5_5_reduce') inception_4e_5_5 = conv_2d(inception_4e_5_5_reduce, 128, filter_size=5, activation='relu', name='inception_4e_5_5') inception_4e_pool = max_pool_2d(inception_4d_output, kernel_size=3, strides=1, name='inception_4e_pool') inception_4e_pool_1_1 = conv_2d(inception_4e_pool, 128, filter_size=1, activation='relu', name='inception_4e_pool_1_1') inception_4e_output = merge([inception_4e_1_1, inception_4e_3_3, inception_4e_5_5, inception_4e_pool_1_1], axis=3, mode='concat') pool4_3_3 = max_pool_2d(inception_4e_output, kernel_size=3, strides=2, name='pool_3_3') # 5a inception_5a_1_1 = conv_2d(pool4_3_3, 256, filter_size=1, activation='relu', name='inception_5a_1_1') inception_5a_3_3_reduce = conv_2d(pool4_3_3, 160, filter_size=1, activation='relu', name='inception_5a_3_3_reduce') inception_5a_3_3 = conv_2d(inception_5a_3_3_reduce, 320, filter_size=3, activation='relu', name='inception_5a_3_3') inception_5a_5_5_reduce = conv_2d(pool4_3_3, 32, filter_size=1, activation='relu', name='inception_5a_5_5_reduce') inception_5a_5_5 = conv_2d(inception_5a_5_5_reduce, 128, filter_size=5, activation='relu', name='inception_5a_5_5') inception_5a_pool = max_pool_2d(pool4_3_3, kernel_size=3, strides=1, name='inception_5a_pool') inception_5a_pool_1_1 = conv_2d(inception_5a_pool, 128, filter_size=1, activation='relu', name='inception_5a_pool_1_1') inception_5a_output = merge([inception_5a_1_1, inception_5a_3_3, inception_5a_5_5, inception_5a_pool_1_1], axis=3, mode='concat') # 5b inception_5b_1_1 = conv_2d(inception_5a_output, 384, filter_size=1, activation='relu', name='inception_5b_1_1') inception_5b_3_3_reduce = conv_2d(inception_5a_output, 192, filter_size=1, activation='relu', name='inception_5b_3_3_reduce') inception_5b_3_3 = conv_2d(inception_5b_3_3_reduce, 384, filter_size=3, activation='relu', name='inception_5b_3_3') inception_5b_5_5_reduce = conv_2d(inception_5a_output, 48, filter_size=1, activation='relu', name='inception_5b_5_5_reduce') inception_5b_5_5 = conv_2d(inception_5b_5_5_reduce, 128, filter_size=5, activation='relu', name='inception_5b_5_5') inception_5b_pool = max_pool_2d(inception_5a_output, kernel_size=3, strides=1, name='inception_5b_pool') inception_5b_pool_1_1 = conv_2d(inception_5b_pool, 128, filter_size=1, activation='relu', name='inception_5b_pool_1_1') inception_5b_output = merge([inception_5b_1_1, inception_5b_3_3, inception_5b_5_5, inception_5b_pool_1_1], axis=3, mode='concat') pool5_7_7 = avg_pool_2d(inception_5b_output, kernel_size=7, strides=1) pool5_7_7 = dropout(pool5_7_7, 0.4) # fc loss = fully_connected(pool5_7_7, 17, activation='softmax') network = regression(loss, optimizer='momentum', loss='categorical_crossentropy', learning_rate=0.001) # to train model = tflearn.DNN(network, checkpoint_path='model_googlenet', max_checkpoints=1, tensorboard_verbose=2) # https://github.com/tflearn/tflearn/blob/master/examples/images/densenet.py # Building Residual Network net = tflearn.input_data(shape=[None, 32, 32, 3], data_preprocessing=img_prep, data_augmentation=img_aug) net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.densenet_block(net, nb_layers, k) net = tflearn.densenet_block(net, nb_layers, k) net = tflearn.densenet_block(net, nb_layers, k) net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, 10, activation='softmax') opt = tflearn.Nesterov(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') # Training model = tflearn.DNN(net, checkpoint_path='model_densenet_cifar10', max_checkpoints=10, tensorboard_verbose=0, clip_gradients=0.) # https://github.com/AhmetHamzaEmra/tflearn/blob/master/examples/images/VGG19.py # Building 'VGG Network' input_layer = input_data(shape=[None, 224, 224, 3]) block1_conv1 = conv_2d(input_layer, 64, 3, activation='relu', name='block1_conv1') block1_conv2 = conv_2d(block1_conv1, 64, 3, activation='relu', name='block1_conv2') block1_pool = max_pool_2d(block1_conv2, 2, strides=2, name = 'block1_pool') block2_conv1 = conv_2d(block1_pool, 128, 3, activation='relu', name='block2_conv1') block2_conv2 = conv_2d(block2_conv1, 128, 3, activation='relu', name='block2_conv2') block2_pool = max_pool_2d(block2_conv2, 2, strides=2, name = 'block2_pool') block3_conv1 = conv_2d(block2_pool, 256, 3, activation='relu', name='block3_conv1') block3_conv2 = conv_2d(block3_conv1, 256, 3, activation='relu', name='block3_conv2') block3_conv3 = conv_2d(block3_conv2, 256, 3, activation='relu', name='block3_conv3') block3_conv4 = conv_2d(block3_conv3, 256, 3, activation='relu', name='block3_conv4') block3_pool = max_pool_2d(block3_conv4, 2, strides=2, name = 'block3_pool') block4_conv1 = conv_2d(block3_pool, 512, 3, activation='relu', name='block4_conv1') block4_conv2 = conv_2d(block4_conv1, 512, 3, activation='relu', name='block4_conv2') block4_conv3 = conv_2d(block4_conv2, 512, 3, activation='relu', name='block4_conv3') block4_conv4 = conv_2d(block4_conv3, 512, 3, activation='relu', name='block4_conv4') block4_pool = max_pool_2d(block4_conv4, 2, strides=2, name = 'block4_pool') block5_conv1 = conv_2d(block4_pool, 512, 3, activation='relu', name='block5_conv1') block5_conv2 = conv_2d(block5_conv1, 512, 3, activation='relu', name='block5_conv2') block5_conv3 = conv_2d(block5_conv2, 512, 3, activation='relu', name='block5_conv3') block5_conv4 = conv_2d(block5_conv3, 512, 3, activation='relu', name='block5_conv4') block4_pool = max_pool_2d(block5_conv4, 2, strides=2, name = 'block4_pool') flatten_layer = tflearn.layers.core.flatten (block4_pool, name='Flatten') fc1 = fully_connected(flatten_layer, 4096, activation='relu') dp1 = dropout(fc1, 0.5) fc2 = fully_connected(dp1, 4096, activation='relu') dp2 = dropout(fc2, 0.5) network = fully_connected(dp2, 1000, activation='rmsprop') regression = tflearn.regression(network, optimizer='adam', loss='categorical_crossentropy', learning_rate=0.001) model = tflearn.DNN(regression, checkpoint_path='vgg19', tensorboard_dir="./logs") #https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py # Building 'VGG Network' network = input_data(shape=[None, 224, 224, 3]) network = conv_2d(network, 64, 3, activation='relu') network = conv_2d(network, 64, 3, activation='relu') network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 128, 3, activation='relu') network = conv_2d(network, 128, 3, activation='relu') network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 256, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 512, 3, activation='relu') network = conv_2d(network, 512, 3, activation='relu') network = conv_2d(network, 512, 3, activation='relu') network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 512, 3, activation='relu') network = conv_2d(network, 512, 3, activation='relu') network = conv_2d(network, 512, 3, activation='relu') network = max_pool_2d(network, 2, strides=2) network = fully_connected(network, 4096, activation='relu') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='relu') network = dropout(network, 0.5) network = fully_connected(network, 17, activation='softmax') network = regression(network, optimizer='rmsprop', loss='categorical_crossentropy', learning_rate=0.0001) # Training model = tflearn.DNN(network, checkpoint_path='model_vgg', max_checkpoints=1, tensorboard_verbose=0) #https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py # Building 'AlexNet' network = input_data(shape=[None, 227, 227, 3]) network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 17, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=0.001) # Training model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=2) #https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py # Building convolutional network network = input_data(shape=[None, 28, 28, 1], name='input') network = conv_2d(network, 32, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = conv_2d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = fully_connected(network, 128, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 10, activation='softmax') network = regression(network, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target') # Training model = tflearn.DNN(network, tensorboard_verbose=0)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | 在实际工作中优化过的结构(dga): ```python def get_cnn_model(max_len, volcab_size = None , is_training = True ): if volcab_size is None : volcab_size = 10240000 # Building convolutional network network = tflearn.input_data(shape = [ None , max_len], name = 'input' ) network = tflearn.embedding(network, input_dim = volcab_size, output_dim = 32 ) network = conv_1d(network, 64 , 3 , activation = 'relu' , regularizer = "L2" ) network = max_pool_1d(network, 2 ) network = conv_1d(network, 64 , 3 , activation = 'relu' , regularizer = "L2" ) network = max_pool_1d(network, 2 ) #network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") #network = max_pool_1d(network, 2) network = batch_normalization(network) #network = fully_connected(network, 512, activation='relu') #network = dropout(network, 0.5) network = fully_connected(network, 64 , activation = 'relu' ) network = dropout(network, 0.5 ) network = fully_connected(network, 2 , activation = 'softmax' ) #network = regression(network, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target') # Regression using SGD with learning rate decay and Top-3 accuracy sgd = tflearn.SGD(learning_rate = 0.1 , lr_decay = 0.96 , decay_step = 1000 ) #top_k = tflearn.metrics.Top_k(3) #network = regression(network, optimizer=sgd, metric=top_k, loss='categorical_crossentropy') network = regression(network, optimizer = sgd, loss = 'categorical_crossentropy' ) model = tflearn.DNN(network, tensorboard_verbose = 0 ) return model ``` 这是一个使用TFLearn库构建的一维卷积神经网络( 1D CNN)模型。以下是这个模型的结构: 1. 输入层:接收长度为max_len的序列数据。 2. 嵌入层:将输入数据映射到一个 32 维的嵌入空间,词汇表大小为volcab_size。 3. 第一层卷积层:使用 64 个 3 大小的卷积核,激活函数为ReLU,正则化方法为L2。 4. 第一层最大池化层:池化窗口大小为 2 。 5. 第二层卷积层:使用 64 个 3 大小的卷积核,激活函数为ReLU,正则化方法为L2。 6. 第二层最大池化层:池化窗口大小为 2 。 7. 批量归一化层:对前一层的输出进行批量归一化。 8. 全连接层:有 64 个神经元,激活函数为ReLU。 9. Dropout层:Dropout比率为 0.5 ,用于防止过拟合。 10. 输出层:有 2 个神经元,激活函数为softmax,用于分类。 11. 回归层:优化器为带学习率衰减的SGD,损失函数为交叉熵。 Input - > Embedding - > Conv1D - > MaxPool1D - > Conv1D - > MaxPool1D - > BatchNormalization - > FullyConnected - > Dropout - > FullyConnected - > Regression 这个模型的主要用途是文本分类或序列分类,因为它使用了嵌入层和一维卷积层。 |
dga应用过的!
标签:
机器学习
, tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-03-08 Go语言的管道Channel用法
2017-03-08 mongodb给我们提供了fsync+lock机制把数据暴力的刷到硬盘上
2017-03-08 cassandra压缩——从文档看,本质上也应该是在做块压缩
2017-03-08 mongodb压缩——snappy、zlib块压缩,btree索引前缀压缩
2017-03-08 python cassandra 创建space table并写入和查询数据
2017-03-08 机器学习算法选择——特征提取
2017-03-08 机器学习的算法选择