tensorflow 模型压缩

模型压缩

为了将tensorflow深度学习模型部署到移动/嵌入式设备上,我们应该致力于减少模型的内存占用,缩短推断时间,减少耗电。有几种方法可以实现这些要求,如量化、权重剪枝或将大模型提炼成小模型。

在这个项目中,我使用了 TensorFlow 中的量化工具来进行模型压缩。目前我只使用权重量化来减小模型大小,因为根据 Mac 上的测试结果,完整 8 位转换没有提供额外的好处,比如缩短推断时间。(由于 requant_range 中的错误,无法在 Pixel 上运行完整的 8 位模型)。由于 8 位量化工具不适合 CPU,时间甚至翻了一倍。如果你有兴趣了解更多关于量化的实用建议,可以阅读 Pete Warden 这篇很棒的文章(https://petewarden.com/2017/06/22/what-ive-learned-about-neural-network-quantization/)。

对模型进行权重量化:

  1. 将模型写入协议缓冲区文件。
  2. 从源安装和配置 TensorFlow(https://www.tensorflow.org/install/install_sources)。
  3. 在 TensorFlow 目录下运行下列命令行:
  1. bazel build tensorflow/tools/graph_transforms:transform_graph 
  2. bazel-bin/tensorflow/tools/graph_transforms/transform_graph --in_graph=/your/.pb/file  --outputs="output_node_name"  --out_graph=/the/quantized/.pb/file  --transforms='quantize_weights' 

以我的项目为例,在量化权重后,预训练的 WaveNet 模型的大小从 15.5Mb 下降到了 4.0Mb。现在可以将这个模型文件移动到安卓项目中的「assets」文件夹。

 

posted @   bonelee  阅读(6036)  评论(2编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
点击右上角即可分享
微信分享提示