tflearn中计算混淆矩阵方法——需要经过一步转换
def do_rnn_wordbag(trainX, testX, trainY, testY): y_test=testY #trainX = pad_sequences(trainX, maxlen=100, value=0.) #testX = pad_sequences(testX, maxlen=100, value=0.) # Converting labels to binary vectors trainY = to_categorical(trainY, nb_classes=2) testY = to_categorical(testY, nb_classes=2) # Network building net = tflearn.input_data([None, 100]) net = tflearn.embedding(net, input_dim=1000, output_dim=128) net = tflearn.lstm(net, 128, dropout=0.1) net = tflearn.fully_connected(net, 2, activation='softmax') net = tflearn.regression(net, optimizer='adam', learning_rate=0.005, loss='categorical_crossentropy') # Training model = tflearn.DNN(net, tensorboard_verbose=0) model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=1,run_id="uba",n_epoch=10) y_predict_list = model.predict(testX) #print y_predict_list y_predict = [] for i in y_predict_list: #print i[0] if i[0] >= 0.5: y_predict.append(0) else: y_predict.append(1) print(classification_report(y_test, y_predict)) print metrics.confusion_matrix(y_test, y_predict) print y_train print "ture" print y_test print "pre" print y_predict
传统方法贝叶斯:
def do_nb(x_train, x_test, y_train, y_test): gnb = GaussianNB() gnb.fit(x_train,y_train) y_pred=gnb.predict(x_test) print(classification_report(y_test, y_pred)) print metrics.confusion_matrix(y_test, y_pred)
传统方法hmm:
def do_hmm(trainX, testX, trainY, testY): T=-580 N=2 lengths=[1] X=[[0]] print len(trainX) for i in trainX: z=[] for j in i: z.append([j]) #print z #X.append(z) X=np.concatenate([X,np.array(z)]) lengths.append(len(i)) #print lengths #print X.shape remodel = hmm.GaussianHMM(n_components=N, covariance_type="full", n_iter=100) remodel.fit(X, lengths) y_predict=[] for i in testX: z=[] for j in i: z.append([j]) y_pred=remodel.score(z) print y_pred if y_pred < T: y_predict.append(1) else: y_predict.append(0) y_predict=np.array(y_predict) print(classification_report(testY, y_predict)) print metrics.confusion_matrix(testY, y_predict) print testY print y_predict
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」