如何比较Keras, TensorLayer, TFLearn ?——如果只是想玩玩深度学习,想快速上手 -- Keras 如果工作中需要解决内部问题,想快速见效果 -- TFLearn 或者 Tensorlayer 如果正式发布的产品和业务,自己设计网络模型,需要持续开发和维护 -- Tensorlayer

转自:https://www.zhihu.com/question/50030898/answer/235137938

如何比较Keras, TensorLayer, TFLearn ?



这三个库主要比的是API设计水平,不得不说原始的 Tensorflow API的确反人类,我承认它的完善、表达能力强,性能好,但是接口设计对人类非常不友好。

这就给了做高层抽象API封装的生存空间,Keras Tensorlayer TFLearn 是目前比较成熟的几个库。

做个比喻,Tensorflow就像当年的 Win32 API,功能强大但是难以使用,随便做点小事情就要写很多代码,我清楚记得我写个显示空白窗口的程序就要40来行。

Tensorlayer比较像 WTL,把一些繁琐的代码封装成更容易使用的接口,但是仍然保留了对底层API调用的能力,抽象的层次不高,仍然可以看到底层的 数据结构和网络结构。比如 可以看到 Session和Placeholder等。

TFLearn比较像 MFC,抽象的层次更高,创造了自己的一套子语法,代码可读性更好,屏蔽了底层难以理解的东西。

Keras比较像 Qt,很高的抽象层次,甚至跨越了多个深度学习框架,完全看不到底层的细节了,甚至某些情况需要触碰底层的对象和数据反而非常麻烦。

 

不同的抽象层次带来不同的学习难度,适应不同的需求。

基本建议:

如果只是想玩玩深度学习,想快速上手 -- Keras

如果工作中需要解决内部问题,想快速见效果 -- TFLearn 或者 Tensorlayer

如果正式发布的产品和业务,自己设计网络模型,需要持续开发和维护 -- Tensorlayer

以上只是个人建议,具体情况因人而异。

posted @   bonelee  阅读(1112)  评论(2编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
点击右上角即可分享
微信分享提示