spark 按照key 分组 然后统计每个key对应的最大、最小、平均值思路——使用groupby,或者reduceby
What you're getting back is an object which allows you to iterate over the results. You can turn the results of groupByKey into a list by calling list() on the values, e.g. example = sc.parallelize([(0, u'D'), (0, u'D'), (1, u'E'), (2, u'F')]) example.groupByKey().collect() # Gives [(0, <pyspark.resultiterable.ResultIterable object ......] example.groupByKey().map(lambda x : (x[0], list(x[1]))).collect() # Gives [(0, [u'D', u'D']), (1, [u'E']), (2, [u'F'])]
# OR:
example.groupByKey().mapValues(list)
Hey Ron, It was pretty much exactly as Sean had depicted. I just needed to provide count an anonymous function to tell it which elements to count. Since I wanted to count them all, the function is simply "true". val grouped = rdd.groupByKey().mapValues { mcs => val values = mcs.map(_.foo.toDouble) val n = values.count(x => true) val sum = values.sum val sumSquares = values.map(x => x * x).sum val stddev = math.sqrt(n * sumSquares - sum * sum) / n print("stddev: " + stddev) stddev } I hope that helps
Just don't. Use reduce by key: lines.map(lambda x: (x[1][0:4], (x[0], float(x[3])))).map(lambda x: (x, x)) \ .reduceByKey(lambda x, y: ( min(x[0], y[0], key=lambda x: x[1]), max(x[1], y[1], , key=lambda x: x[1])))
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」