我的spark python 决策树实例
from numpy import array from pyspark.mllib.regression import LabeledPoint from pyspark.mllib.tree import DecisionTree, DecisionTreeModel from pyspark import SparkContext from pyspark.mllib.evaluation import BinaryClassificationMetrics sc = SparkContext(appName="PythonDecisionTreeClassificationExample") data = [ LabeledPoint(0.0, [0.0]), LabeledPoint(1.0, [1.0]), LabeledPoint(0.0, [-2.0]), LabeledPoint(0.0, [-1.0]), LabeledPoint(0.0, [-3.0]), LabeledPoint(1.0, [4.0]), LabeledPoint(1.0, [4.5]), LabeledPoint(1.0, [4.9]), LabeledPoint(1.0, [3.0]) ] all_data = sc.parallelize(data) (trainingData, testData) = all_data.randomSplit([0.8, 0.2]) # model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {}) model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={}, impurity='gini', maxDepth=5, maxBins=32) print(model) print(model.toDebugString()) model.predict(array([1.0])) model.predict(array([0.0])) rdd = sc.parallelize([[1.0], [0.0]]) model.predict(rdd).collect() predictions = model.predict(testData.map(lambda x: x.features)) labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
predictionsAndLabels = predictions.zip(testData.map(lambda lp: lp.label))
metrics = BinaryClassificationMetrics(predictionsAndLabels ) print "AUC=%f PR=%f" % (metrics.areaUnderROC, metrics.areaUnderPR) testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / float(testData.count()) print('Test Error = ' + str(testErr)) print('Learned classification tree model:') print(model.toDebugString()) # Save and load model model.save(sc, "./myDecisionTreeClassificationModel") sameModel = DecisionTreeModel.load(sc, "./myDecisionTreeClassificationModel")
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」