ES忽略TF-IDF评分——使用constant_score

Ignoring TF/IDF

Sometimes we just don’t care about TF/IDF. All we want to know is that a certain word appears in a field. Perhaps we are searching for a vacation home and we want to find houses that have as many of these features as possible:

  • WiFi
  • Garden
  • Pool

The vacation home documents look something like this:

{ "description": "A delightful four-bedroomed house with ... " }

We could use a simple match query:

GET /_search
{
  "query": {
    "match": {
      "description": "wifi garden pool"
    }
  }
}

However, this isn’t really full-text search. In this case, TF/IDF just gets in the way. We don’t care whether wifi is a common term, or how often it appears in the document. All we care about is that it does appear. In fact, we just want to rank houses by the number of features they have—the more, the better. If a feature is present, it should score 1, and if it isn’t, 0.

constant_score Query

Enter the constant_score query. This query can wrap either a query or a filter, and assigns a score of1 to any documents that match, regardless of TF/IDF:

GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "constant_score": {
          "query": { "match": { "description": "wifi" }}
        }},
        { "constant_score": {
          "query": { "match": { "description": "garden" }}
        }},
        { "constant_score": {
          "query": { "match": { "description": "pool" }}
        }}
      ]
    }
  }
}

Perhaps not all features are equally important—some have more value to the user than others. If the most important feature is the pool, we could boost that clause to make it count for more:

GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "constant_score": {
          "query": { "match": { "description": "wifi" }}
        }},
        { "constant_score": {
          "query": { "match": { "description": "garden" }}
        }},
        { "constant_score": {
          "boost":   2 
          "query": { "match": { "description": "pool" }}
        }}
      ]
    }
  }
}

A matching pool clause would add a score of 2, while the other clauses would add a score of only 1 each.

Note

The final score for each result is not simply the sum of the scores of all matching clauses. The coordination factor and query normalization factor are still taken into account.

We could improve our vacation home documents by adding a not_analyzed features field to our vacation homes:

{ "features": [ "wifi", "pool", "garden" ] } 这样改写有什么好处?省索引空间吗?

参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/ignoring-tfidf.html#ignoring-tfidf

posted @   bonelee  阅读(5546)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
点击右上角即可分享
微信分享提示