ES 搜索结果expalain 可以类似数据库性能调优来看排序算法的选择

When we run a simple term query with explain set to true (see Understanding the Score), you will see that the only factors involved in calculating the score are the ones explained in the preceding sections:

PUT /my_index/doc/1
{ "text" : "quick brown fox" }

GET /my_index/doc/_search?explain
{
  "query": {
    "term": {
      "text": "fox"
    }
  }
}

The (abbreviated) explanation from the preceding request is as follows:

weight(text:fox in 0) [PerFieldSimilarity]:  0.15342641 

result of:
    fieldWeight in 0                         0.15342641
    product of:
        tf(freq=1.0), with freq of 1:        1.0 

        idf(docFreq=1, maxDocs=1):           0.30685282 

        fieldNorm(doc=0):                    0.5 

The final score for term fox in field text in the document with internal Lucene doc ID 0.

The term fox appears once in the text field in this document.

The inverse document frequency of fox in the text field in all documents in this index.

The field-length normalization factor for this field.

Of course, queries usually consist of more than one term, so we need a way of combining the weights of multiple terms. For this, we turn to the vector space model.

 

见:https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html

posted @   bonelee  阅读(906)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
点击右上角即可分享
微信分享提示