ES 相似度算法设置(续)

Tuning BM25

One of the nice features of BM25 is that, unlike TF/IDF, it has two parameters that allow it to be tuned:

k1
This parameter controls how quickly an increase in term frequency results in term-frequency saturation. The default value is 1.2. Lower values result in quicker saturation, and higher values in slower saturation.
b
This parameter controls how much effect field-length normalization should have. A value of 0.0disables normalization completely, and a value of 1.0 normalizes fully. The default is 0.75.

The practicalities of tuning BM25 are another matter. The default values for k1 and b should be suitable for most document collections, but the optimal values really depend on the collection. Finding good values for your collection is a matter of adjusting, checking, and adjusting again.

The similarity algorithm can be set on a per-field basis. It’s just a matter of specifying the chosen algorithm in the field’s mapping:

PUT /my_index
{
  "mappings": {
    "doc": {
      "properties": {
        "title": {
          "type":       "string",
          "similarity": "BM25" 
        },
        "body": {
          "type":       "string",
          "similarity": "default" 
        }
      }
  }
}

The title field uses BM25 similarity.

The body field uses the default similarity (see Lucene’s Practical Scoring Function).

Currently, it is not possible to change the similarity mapping for an existing field. You would need to reindex your data in order to do that.

Configuring BM25

Configuring a similarity is much like configuring an analyzer. Custom similarities can be specified when creating an index. For instance:

PUT /my_index
{
  "settings": {
    "similarity": {
      "my_bm25": { 
        "type": "BM25",
        "b":    0 
      }
    }
  },
  "mappings": {
    "doc": {
      "properties": {
        "title": {
          "type":       "string",
          "similarity": "my_bm25" 
        },
        "body": {
          "type":       "string",
          "similarity": "BM25" 
        }
      }
    }
  }
}

参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/changing-similarities.html
posted @   bonelee  阅读(5321)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
点击右上角即可分享
微信分享提示