Elasticsearch mapping文档相似性算法

Elasticsearch allows you to configure a scoring algorithm or similarity per field. The similaritysetting provides a simple way of choosing a similarity algorithm other than the default TF/IDF, such as BM25.

Similarities are mostly useful for text fields, but can also apply to other field types.

Custom similarities can be configured by tuning the parameters of the built-in similarities. For more details about this expert options, see the similarity module.

The only similarities which can be used out of the box, without any further configuration are:

BM25
The Okapi BM25 algorithm. The algorithm used by default in Elasticsearch and Lucene. See Pluggable Similarity Algorithms for more information.
classic
The TF/IDF algorithm which used to be the default in Elasticsearch and Lucene. See Lucene’s Practical Scoring Function for more information.

The similarity can be set on the field level when a field is first created, as follows:

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "default_field": { 
          "type": "text"
        },
        "classic_field": {
          "type": "text",
          "similarity": "classic" 
        }
      }
    }
  }
}

The default_field uses the BM25 similarity.

The classic_field uses the classic similarity (ie TF/IDF).

 

参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/similarity.html

posted @   bonelee  阅读(2174)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
点击右上角即可分享
微信分享提示