druid相关的时间序列数据库——也用到了倒排相关的优化技术
Cattell [6] maintains a great summary about existing Scalable SQL and NoSQL data stores. Hu [18] contributed another great summary for streaming databases. Druid feature-wise sits some-
where between Google’s Dremel [28] and PowerDrill [17]. Druid has most of the features implemented in Dremel (Dremel handles arbitrary nested data structures while Druid only allows for a single
level of array-based nesting) and many of the interesting compression algorithms mentioned in PowerDrill. Although Druid builds on many of the same principles as other distributed columnar data stores [15], many of these data stores are
designed to be more generic key-value stores [23] and do not sup
port computation directly in the storage layer. There are also other
data stores designed for some of the same data warehousing issues
that Druid is meant to solve. These systems include in-memory
databases such as SAP’s HANA [14] and VoltDB [43]. These data
stores lack Druid’slowlatency ingestion characteristics. Druidalso
has native analytical features baked in, similar to ParAccel [34],
however, Druid allows system wide rolling software updates with
no downtime.
Druid is similiar to C-Store [38] and LazyBase [8] in that it has
twosubsystems,aread-optimizedsubsysteminthehistoricalnodes
andawrite-optimizedsubsysteminreal-timenodes. Real-timenodes
are designed to ingest a high volume of append heavy data, and do
not support data updates. Unlike the two aforementioned systems,
Druid is meant for OLAP transactions and not OLTP transactions.
Druid’s low latency data ingestion features share some similar-
ities with Trident/Storm [27] and Spark Streaming [45], however,
both systems are focused on stream processing whereas Druid is
focused on ingestion and aggregation. Stream processors are great
complements to Druid as a means of pre-processing the data before
the data enters Druid.
There are a class of systems that specialize in queries on top of
cluster computing frameworks. Shark [13] is such a system for
queriesontopofSpark,andCloudera’sImpala[9]isanothersystem
focused on optimizing query performance on top of HDFS. Druid
historical nodes download data locally and only work with native
Druid indexes. We believe this setup allows for faster query laten
cies.
Druid leverages a unique combination of algorithms in its archi-
tecture. Although we believe no other data store has the same set
of functionality as Druid, some of Druid’s optimization techniques
suchas using inverted indices to perform fast filter sarealsousedin
other data stores [26].
druid白皮书:http://static.druid.io/docs/druid.pdf
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」