elasticsearch聚合操作——本质就是针对搜索后的结果使用桶bucket(允许嵌套)进行group by,统计下分组结果,包括min/max/avg

分析

最后,我们还有一个需求需要完成:允许管理者在职员目录中进行一些分析。 Elasticsearch有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计。它很像SQL中的GROUP BY但是功能更强大。

+

 

举个例子,让我们找到所有职员中最大的共同点(兴趣爱好)是什么:

GET /megacorp/employee/_search
{
  "aggs": {
    "all_interests": {
      "terms": { "field": "interests" }
    }
  }
}

暂时先忽略语法只看查询结果:

{
   ...
   "hits": { ... },
   "aggregations": {
      "all_interests": {
         "buckets": [
            {
               "key":       "music",
               "doc_count": 2
            },
            {
               "key":       "forestry",
               "doc_count": 1
            },
            {
               "key":       "sports",
               "doc_count": 1
            }
         ]
      }
   }
}

我们可以看到两个职员对音乐有兴趣,一个喜欢林学,一个喜欢运动。这些数据并没有被预先计算好,它们是实时的从匹配查询语句的文档中动态计算生成的。如果我们想知道所有姓"Smith"的人最大的共同点(兴趣爱好),我们只需要增加合适的语句既可:

GET /megacorp/employee/_search
{
  "query": {
    "match": {
      "last_name": "smith"
    }
  },
  "aggs": {
    "all_interests": {
      "terms": {
        "field": "interests"
      }
    }
  }
}

all_interests聚合已经变成只包含和查询语句相匹配的文档了:

  ...
  "all_interests": {
     "buckets": [
        {
           "key": "music",
           "doc_count": 2
        },
        {
           "key": "sports",
           "doc_count": 1
        }
     ]
  }

聚合也允许分级汇总。例如,让我们统计每种兴趣下职员的平均年龄:

GET /megacorp/employee/_search
{
    "aggs" : {
        "all_interests" : {
            "terms" : { "field" : "interests" },
            "aggs" : {
                "avg_age" : {
                    "avg" : { "field" : "age" }
                }
            }
        }
    }
}

虽然这次返回的聚合结果有些复杂,但任然很容易理解:

3

 

  ...
  "all_interests": {
     "buckets": [
        {
           "key": "music",
           "doc_count": 2,
           "avg_age": {
              "value": 28.5
           }
        },
        {
           "key": "forestry",
           "doc_count": 1,
           "avg_age": {
              "value": 35
           }
        },
        {
           "key": "sports",
           "doc_count": 1,
           "avg_age": {
              "value": 25
           }
        }
     ]
  }

该聚合结果比之前的聚合结果要更加丰富。我们依然得到了兴趣以及数量(指具有该兴趣的员工人数)的列表,但是现在每个兴趣额外拥有avg_age字段来显示具有该兴趣员工的平均年龄。

2

 

即使你还不理解语法,但你也可以大概感觉到通过这个特性可以完成相当复杂的聚合工作,你可以处理任何类型的数据。

 

为了掌握聚合aggs语法,你一定要了解两个主要概念:

Buckets(桶):

满足某个条件的文档集合。

Metrics(指标):

为某个桶中的文档计算得到的统计信息。

就是这样!每个聚合只是简单地由一个或者多个桶,零个或者多个指标组合而成。


桶和SQL中的组(Grouping)拥有相似的概念,而指标则与COUNT(),SUM(),MAX(),MIN(), AVG()等相似。

让我们仔细看看这些概念。

桶(Buckets)

一个桶就是满足特定条件的一个文档集合:

一名员工要么属于男性桶,或者女性桶。

 

一个聚合就是一些桶和指标的组合。一个聚合可以只有一个桶,或者一个指标,或者每样一个。在桶中甚至可以有多个嵌套的桶。比如,我们可以将文档按照其所属国家进行分桶,然后对每个桶计算其平均薪资(一个指标)。

因为桶是可以嵌套的,我们能够实现一个更加复杂的聚合操作:

将文档按照国家进行分桶。(桶)
然后将每个国家的桶再按照性别分桶。(桶)
然后将每个性别的桶按照年龄区间进行分桶。(桶)
最后,为每个年龄区间计算平均薪资。

大家一定要理解Buckets(桶)及Metrics(指标)概念,buckets多层嵌套的概念,想基于哪个桶做统计计算,只需要嵌入一层aggs就可以了。

posted @ 2017-01-23 18:10  bonelee  阅读(9262)  评论(0编辑  收藏  举报