levelDB, TokuDB, BDB等kv存储引擎性能对比——wiredtree, wiredLSM,LMDB读写很强啊
在:http://www.lmdb.tech/bench/inmem/
2. Small Data Set
Using the laptop we generate a database with 20 million records. The records have 16 byte keys and 100 byte values so the resulting database should be about 2.2GB in size. After the data is loaded a "readwhilewriting" test is run using 4 reader threads and one writer. All of the threads operate on randomly selected records in the database. The writer performs updates to existing records; no records are added or deleted so the DB size should not change much during the test.
The tests in this section and in Section 3 are all run on a tmpfs, just like the RocksDB report. I.e., all of the data is stored only in RAM. Additional tests using an SSD follow in Section 4.
The pertinent results are tabulated here and expanded on in the following sections.
Engine | Load Time | Overhead | Load Size | Writes/Sec | Reads/Sec | Run Time | Final Size | CPU% | Process Size | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wall | User | Sys | KB | Wall | User | Sys | KB | KB | |||||
LevelDB | 00:34.70 | 00:44.72 | 00:06.70 | 1.4818443804 | 2246004 | 10232 | 26678 | 00:49:58.73 | 01:31:48.62 | 00:52:50.95 | 3452388 | 289% | 2138508 |
Basho | 00:40.41 | 01:24.39 | 00:17.82 | 2.5293244246 | 2368768 | 10232 | 68418 | 00:19:32.94 | 01:14:10.04 | 00:01:19.19 | 2612436 | 386% | 6775376 |
BerkeleyDB | 02:12.61 | 01:58.92 | 00:13.57 | 0.9990950909 | 5844376 | 9565 | 86202 | 00:15:28.44 | 00:42:07.97 | 00:17:27.49 | 5839912 | 385% | 3040716 |
Hyper | 00:38.78 | 00:49.88 | 00:06.43 | 1.4520371325 | 2246448 | 10208 | 138393 | 00:09:38.39 | 00:35:06.12 | 00:02:06.18 | 2292632 | 385% | 2700088 |
LMDB | 00:10.55 | 00:08.15 | 00:02.37 | 0.9971563981 | 2516192 | 10224 | 1449709 | 00:00:55.46 | 00:03:37.63 | 00:00:01.67 | 2547968 | 395% | 2550408 |
RocksDB | 00:21.54 | 00:34.70 | 00:05.99 | 1.8890436397 | 2256032 | 10233 | 91544 | 00:14:37.74 | 00:54:06.84 | 00:02:38.04 | 3181764 | 387% | 6713852 |
TokuDB | 01:45.12 | 01:41.58 | 00:47.37 | 1.4169520548 | 2726168 | 9881 | 109682 | 00:12:12.91 | 00:37:41.45 | 00:07:10.03 | 3920784 | 367% | 5429056 |
WiredLSM | 01:10.93 | 02:35.55 | 00:18.62 | 2.4555195263 | 2492440 | 10230 | 179617 | 00:07:26.24 | 00:28:55.85 | 00:00:07.76 | 2948988 | 390% | 3205396 |
WiredBtree | 00:17.79 | 00:15.68 | 00:02.09 | 0.9988757729 | 2381876 | 10021 | 752078 | 00:01:53.46 | 00:06:36.98 | 00:00:14.78 | 4752568 | 362% | 3415468 |
3. Larger Data Set
These tests use 100 million records and are run on the 16 core server. Aside from the data set size things are much the same. Here are the tabular results:
Engine | Load Time | Overhead | Load Size | Writes/Sec | Reads/Sec | Run Time | Final Size | CPU% | Process Size | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wall | User | Sys | KB | Wall | User | Sys | KB | KB | |||||
LevelDB | 03:06.75 | 04:41.26 | 00:42.87 | 1.7356358768 | 11273396 | 9184 | 7594 | 01:00:02.00 | 01:22:11.46 | 01:52:10.46 | 13734168 | 323% | 3284192 |
Basho | 04:22.96 | 11:09.24 | 02:18.93 | 3.0733571646 | 11449492 | 10211 | 80135 | 01:00:23.00 | 14:32:23.67 | 00:11:49.40 | 13841220 | 1464% | 19257796 |
BerkeleyDB | 14:59.45 | 13:34.30 | 01:25.15 | 1 | 28381956 | 3378 | 55066 | 01:00:02.00 | 03:02:00.69 | 12:42:39.63 | 28387880 | 1573% | 14756768 |
Hyper | 03:43.61 | 05:41.14 | 00:39.02 | 1.7001028577 | 11280092 | 10231 | 11673 | 01:00:04.00 | 01:59:42.09 | 01:53:24.27 | 15149416 | 387% | 6332460 |
LMDB | 01:04.15 | 00:52.31 | 00:11.82 | 0.9996882307 | 12605332 | 10230 | 2486800 | 00:11:14.14 | 02:47:58.57 | 00:00:10.06 | 12627692 | 1598% | 12605788 |
RocksDB | 02:28.66 | 03:59.92 | 00:30.97 | 1.8222117584 | 11289688 | 10232 | 129397 | 01:00:22.00 | 12:08:05.94 | 02:51:58.54 | 12777708 | 1490% | 18599544 |
TokuDB | 07:44.10 | 09:17.31 | 02:54.82 | 1.5775263952 | 12665136 | 4601 | 70208 | 01:00:15.00 | 03:02:37.44 | 11:21:45.00 | 15328956 | 1434% | 23315964 |
WiredLSM | 07:10.50 | 19:25.80 | 02:31.10 | 3.0590011614 | 12254620 | 10194 | 278415 | 01:00:05.00 | 15:51:04.17 | 00:02:09.76 | 16016296 | 1586% | 17723992 |
WiredBtree | 02:07.49 | 01:49.52 | 00:17.97 | 1 | 11932620 | 10145 | 1320939 | 00:20:58.10 | 05:06:13.60 | 00:05:14.87 | 23865368 | 1560% | 20743232 |
看这个pdf里有对kv存储的架构和底层原理的详细介绍:
https://daim.idi.ntnu.no/masteroppgaver/008/8885/masteroppgave.pdf
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」