454. 4Sum II ——查找本质:hash最快,二分次之
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
class Solution(object): def fourSumCount(self, A, B, C, D): """ :type A: List[int] :type B: List[int] :type C: List[int] :type D: List[int] :rtype: int Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 A[i]+B[j]=E[n*n] [-1,0,0,1] C[i]+D[j]=F[n*n] [-1,1,2,4] E[i]+E[j]=0 -1+1=0, 1+(-1)=0 """ E = {} for a in A: for b in B: if a+b not in E: E[a+b] = 0 E[a+b] += 1 ans = 0 for c in C: for d in D: if -(c+d) in E: ans += E[-(c+d)] return ans