AutoGPT核心代码分析——核心是ReAct

最核心的部分:

agent.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from __future__ import annotations
 
import inspect
import logging
from datetime import datetime
from typing import TYPE_CHECKING, Optional
 
import sentry_sdk
from forge.agent.base import BaseAgent, BaseAgentConfiguration, BaseAgentSettings
from forge.agent.protocols import (
    AfterExecute,
    AfterParse,
    CommandProvider,
    DirectiveProvider,
    MessageProvider,
)
from forge.command.command import Command, CommandOutput
from forge.components.action_history import (
    ActionHistoryComponent,
    EpisodicActionHistory,
)
from forge.components.code_executor.code_executor import CodeExecutorComponent
from forge.components.context.context import AgentContext, ContextComponent
from forge.components.file_manager import FileManagerComponent
from forge.components.git_operations import GitOperationsComponent
from forge.components.image_gen import ImageGeneratorComponent
from forge.components.system import SystemComponent
from forge.components.user_interaction import UserInteractionComponent
from forge.components.watchdog import WatchdogComponent
from forge.components.web import WebSearchComponent, WebSeleniumComponent
from forge.file_storage.base import FileStorage
from forge.llm.prompting.schema import ChatPrompt
from forge.llm.prompting.utils import dump_prompt
from forge.llm.providers import (
    AssistantFunctionCall,
    ChatMessage,
    ChatModelProvider,
    ChatModelResponse,
)
from forge.llm.providers.utils import function_specs_from_commands
from forge.models.action import (
    ActionErrorResult,
    ActionInterruptedByHuman,
    ActionResult,
    ActionSuccessResult,
)
from forge.models.config import Configurable
from forge.utils.exceptions import (
    AgentException,
    AgentTerminated,
    CommandExecutionError,
    UnknownCommandError,
)
from pydantic import Field
 
from autogpt.app.log_cycle import (
    CURRENT_CONTEXT_FILE_NAME,
    NEXT_ACTION_FILE_NAME,
    USER_INPUT_FILE_NAME,
    LogCycleHandler,
)
 
from .prompt_strategies.one_shot import (
    OneShotAgentActionProposal,
    OneShotAgentPromptStrategy,
)
 
if TYPE_CHECKING:
    from forge.config.config import Config
 
logger = logging.getLogger(__name__)
 
 
class AgentConfiguration(BaseAgentConfiguration):
    pass
 
 
class AgentSettings(BaseAgentSettings):
    config: AgentConfiguration = Field(default_factory=AgentConfiguration)
 
    history: EpisodicActionHistory[OneShotAgentActionProposal] = Field(
        default_factory=EpisodicActionHistory[OneShotAgentActionProposal]
    )
    """(STATE) The action history of the agent."""
 
    context: AgentContext = Field(default_factory=AgentContext)
 
 
class Agent(BaseAgent, Configurable[AgentSettings]):
    default_settings: AgentSettings = AgentSettings(
        name="Agent",
        description=__doc__ if __doc__ else "",
    )
 
    def __init__(
        self,
        settings: AgentSettings,
        llm_provider: ChatModelProvider,
        file_storage: FileStorage,
        legacy_config: Config,
    ):
        super().__init__(settings)
 
        self.llm_provider = llm_provider
        self.ai_profile = settings.ai_profile
        self.directives = settings.directives
        prompt_config = OneShotAgentPromptStrategy.default_configuration.copy(deep=True)
        prompt_config.use_functions_api = (
            settings.config.use_functions_api
            # Anthropic currently doesn't support tools + prefilling :(
            and self.llm.provider_name != "anthropic"
        )
        self.prompt_strategy = OneShotAgentPromptStrategy(prompt_config, logger)
        self.commands: list[Command] = []
 
        # Components
        self.system = SystemComponent(legacy_config, settings.ai_profile)
        self.history = ActionHistoryComponent(
            settings.history,
            self.send_token_limit,
            lambda x: self.llm_provider.count_tokens(x, self.llm.name),
            legacy_config,
            llm_provider,
        ).run_after(WatchdogComponent)
        self.user_interaction = UserInteractionComponent(legacy_config)
        self.file_manager = FileManagerComponent(settings, file_storage)
        self.code_executor = CodeExecutorComponent(
            self.file_manager.workspace,
            settings,
            legacy_config,
        )
        self.git_ops = GitOperationsComponent(legacy_config)
        self.image_gen = ImageGeneratorComponent(
            self.file_manager.workspace, legacy_config
        )
        self.web_search = WebSearchComponent(legacy_config)
        self.web_selenium = WebSeleniumComponent(legacy_config, llm_provider, self.llm)
        self.context = ContextComponent(self.file_manager.workspace, settings.context)
        self.watchdog = WatchdogComponent(settings.config, settings.history).run_after(
            ContextComponent
        )
 
        self.created_at = datetime.now().strftime("%Y%m%d_%H%M%S")
        """Timestamp the agent was created; only used for structured debug logging."""
 
        self.log_cycle_handler = LogCycleHandler()
        """LogCycleHandler for structured debug logging."""
 
        self.event_history = settings.history
        self.legacy_config = legacy_config
 
    async def propose_action(self) -> OneShotAgentActionProposal:
        """Proposes the next action to execute, based on the task and current state.
 
        Returns:
            The command name and arguments, if any, and the agent's thoughts.
        """
        self.reset_trace()
 
        # Get directives
        resources = await self.run_pipeline(DirectiveProvider.get_resources)
        constraints = await self.run_pipeline(DirectiveProvider.get_constraints)
        best_practices = await self.run_pipeline(DirectiveProvider.get_best_practices)
 
        directives = self.state.directives.copy(deep=True)
        directives.resources += resources
        directives.constraints += constraints
        directives.best_practices += best_practices
 
        # Get commands
        self.commands = await self.run_pipeline(CommandProvider.get_commands)
        self._remove_disabled_commands()
 
        # Get messages
        messages = await self.run_pipeline(MessageProvider.get_messages)
 
        prompt: ChatPrompt = self.prompt_strategy.build_prompt(
            messages=messages,
            task=self.state.task,
            ai_profile=self.state.ai_profile,
            ai_directives=directives,
            commands=function_specs_from_commands(self.commands),
            include_os_info=self.legacy_config.execute_local_commands,
        )
 
        self.log_cycle_handler.log_count_within_cycle = 0
        self.log_cycle_handler.log_cycle(
            self.state.ai_profile.ai_name,
            self.created_at,
            self.config.cycle_count,
            prompt.raw(),
            CURRENT_CONTEXT_FILE_NAME,
        )
 
        logger.debug(f"Executing prompt:\n{dump_prompt(prompt)}")
        output = await self.complete_and_parse(prompt)
        self.config.cycle_count += 1
 
        return output
 
    async def complete_and_parse(
        self, prompt: ChatPrompt, exception: Optional[Exception] = None
    ) -> OneShotAgentActionProposal:
        if exception:
            prompt.messages.append(ChatMessage.system(f"Error: {exception}"))
 
        response: ChatModelResponse[
            OneShotAgentActionProposal
        ] = await self.llm_provider.create_chat_completion(
            prompt.messages,
            model_name=self.llm.name,
            completion_parser=self.prompt_strategy.parse_response_content,
            functions=prompt.functions,
            prefill_response=prompt.prefill_response,
        )
        result = response.parsed_result
 
        self.log_cycle_handler.log_cycle(
            self.state.ai_profile.ai_name,
            self.created_at,
            self.config.cycle_count,
            result.thoughts.dict(),
            NEXT_ACTION_FILE_NAME,
        )
 
        await self.run_pipeline(AfterParse.after_parse, result)
 
        return result
 
    async def execute(
        self,
        proposal: OneShotAgentActionProposal,
        user_feedback: str = "",
    ) -> ActionResult:
        tool = proposal.use_tool
 
        # Get commands
        self.commands = await self.run_pipeline(CommandProvider.get_commands)
        self._remove_disabled_commands()
 
        try:
            return_value = await self._execute_tool(tool)
 
            result = ActionSuccessResult(outputs=return_value)
        except AgentTerminated:
            raise
        except AgentException as e:
            result = ActionErrorResult.from_exception(e)
            logger.warning(f"{tool} raised an error: {e}")
            sentry_sdk.capture_exception(e)
 
        result_tlength = self.llm_provider.count_tokens(str(result), self.llm.name)
        if result_tlength > self.send_token_limit // 3:
            result = ActionErrorResult(
                reason=f"Command {tool.name} returned too much output. "
                "Do not execute this command again with the same arguments."
            )
 
        await self.run_pipeline(AfterExecute.after_execute, result)
 
        logger.debug("\n".join(self.trace))
 
        return result
 
    async def do_not_execute(
        self, denied_proposal: OneShotAgentActionProposal, user_feedback: str
    ) -> ActionResult:
        result = ActionInterruptedByHuman(feedback=user_feedback)
        self.log_cycle_handler.log_cycle(
            self.state.ai_profile.ai_name,
            self.created_at,
            self.config.cycle_count,
            user_feedback,
            USER_INPUT_FILE_NAME,
        )
 
        await self.run_pipeline(AfterExecute.after_execute, result)
 
        logger.debug("\n".join(self.trace))
 
        return result
 
    async def _execute_tool(self, tool_call: AssistantFunctionCall) -> CommandOutput:
        """Execute the command and return the result
 
        Args:
            tool_call (AssistantFunctionCall): The tool call to execute
 
        Returns:
            str: The execution result
        """
        # Execute a native command with the same name or alias, if it exists
        command = self._get_command(tool_call.name)
        try:
            result = command(**tool_call.arguments)
            if inspect.isawaitable(result):
                return await result
            return result
        except AgentException:
            raise
        except Exception as e:
            raise CommandExecutionError(str(e))
 
    def _get_command(self, command_name: str) -> Command:
        for command in reversed(self.commands):
            if command_name in command.names:
                return command
 
        raise UnknownCommandError(
            f"Cannot execute command '{command_name}': unknown command."
        )
 
    def _remove_disabled_commands(self) -> None:
        self.commands = [
            command
            for command in self.commands
            if not any(
                name in self.legacy_config.disabled_commands for name in command.names
            )
        ]
 
    def find_obscured_commands(self) -> list[Command]:
        seen_names = set()
        obscured_commands = []
        for command in reversed(self.commands):
            # If all of the command's names have been seen, it's obscured
            if seen_names.issuperset(command.names):
                obscured_commands.append(command)
            else:
                seen_names.update(command.names)
        return list(reversed(obscured_commands))

  

是一个助理AI系统的实现。以下是代码的功能概述:

  1. 导入必要的模块和类,包括日志记录、时间处理、类型检查等。
  2. 定义了AgentConfiguration、AgentSettings和Agent类,用于配置助理代理的设置和行为。
  3. 实现了用于处理指令、命令、消息等的Provider类。
  4. 实现了用于执行代码、文件管理、图片生成、web搜索等功能的组件
  5. 定义了"propose_action"方法,用于提出下一步的操作建议。
  6. 包含了对话提示、日志处理、异常处理等模块。
  7. 实现了"execute"和"do_not_execute"方法,用于执行或终止操作建议。
  8. 包含了辅助方法用于执行工具调用、找到可执行命令等功能。
  9. 使用Pydantic进行数据验证和模型定义。
  10. 包含了一些辅助方法和变量,用于监控操作、管理上下文等。

总体而言,这些代码构建了一个助理AI系统,用于提出决策建议、执行操作,并与用户进行交互。

另外一个就是利用gpt4 类似的LLM进行任务编排,代码在:

one_shot.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from __future__ import annotations
 
import json
import platform
import re
from logging import Logger
 
import distro
from forge.config.ai_directives import AIDirectives
from forge.config.ai_profile import AIProfile
from forge.json.parsing import extract_dict_from_json
from forge.llm.prompting import ChatPrompt, LanguageModelClassification, PromptStrategy
from forge.llm.prompting.utils import format_numbered_list
from forge.llm.providers.schema import (
    AssistantChatMessage,
    ChatMessage,
    CompletionModelFunction,
)
from forge.models.action import ActionProposal
from forge.models.config import SystemConfiguration, UserConfigurable
from forge.models.json_schema import JSONSchema
from forge.models.utils import ModelWithSummary
from forge.utils.exceptions import InvalidAgentResponseError
from pydantic import Field
 
_RESPONSE_INTERFACE_NAME = "AssistantResponse"
 
 
class AssistantThoughts(ModelWithSummary):
    observations: str = Field(
        ..., description="Relevant observations from your last action (if any)"
    )
    text: str = Field(..., description="Thoughts")
    reasoning: str = Field(..., description="Reasoning behind the thoughts")
    self_criticism: str = Field(..., description="Constructive self-criticism")
    plan: list[str] = Field(
        ..., description="Short list that conveys the long-term plan"
    )
    speak: str = Field(..., description="Summary of thoughts, to say to user")
 
    def summary(self) -> str:
        return self.text
 
 
class OneShotAgentActionProposal(ActionProposal):
    thoughts: AssistantThoughts
 
 
class OneShotAgentPromptConfiguration(SystemConfiguration):
    DEFAULT_BODY_TEMPLATE: str = (
        "## Constraints\n"
        "You operate within the following constraints:\n"
        "{constraints}\n"
        "\n"
        "## Resources\n"
        "You can leverage access to the following resources:\n"
        "{resources}\n"
        "\n"
        "## Commands\n"
        "These are the ONLY commands you can use."
        " Any action you perform must be possible through one of these commands:\n"
        "{commands}\n"
        "\n"
        "## Best practices\n"
        "{best_practices}"
    )
 
    DEFAULT_CHOOSE_ACTION_INSTRUCTION: str = (
        "Determine exactly one command to use next based on the given goals "
        "and the progress you have made so far, "
        "and respond using the JSON schema specified previously:"
    )
 
    body_template: str = UserConfigurable(default=DEFAULT_BODY_TEMPLATE)
    choose_action_instruction: str = UserConfigurable(
        default=DEFAULT_CHOOSE_ACTION_INSTRUCTION
    )
    use_functions_api: bool = UserConfigurable(default=False)
 
    #########
    # State #
    #########
    # progress_summaries: dict[tuple[int, int], str] = Field(
    #     default_factory=lambda: {(0, 0): ""}
    # )
 
 
class OneShotAgentPromptStrategy(PromptStrategy):
    default_configuration: OneShotAgentPromptConfiguration = (
        OneShotAgentPromptConfiguration()
    )
 
    def __init__(
        self,
        configuration: OneShotAgentPromptConfiguration,
        logger: Logger,
    ):
        self.config = configuration
        self.response_schema = JSONSchema.from_dict(OneShotAgentActionProposal.schema())
        self.logger = logger
 
    @property
    def model_classification(self) -> LanguageModelClassification:
        return LanguageModelClassification.FAST_MODEL  # FIXME: dynamic switching
 
    def build_prompt(
        self,
        *,
        messages: list[ChatMessage],
        task: str,
        ai_profile: AIProfile,
        ai_directives: AIDirectives,
        commands: list[CompletionModelFunction],
        include_os_info: bool,
        **extras,
    ) -> ChatPrompt:
        """Constructs and returns a prompt with the following structure:
        1. System prompt
        3. `cycle_instruction`
        """
        system_prompt, response_prefill = self.build_system_prompt(
            ai_profile=ai_profile,
            ai_directives=ai_directives,
            commands=commands,
            include_os_info=include_os_info,
        )
 
        final_instruction_msg = ChatMessage.user(self.config.choose_action_instruction)
 
        return ChatPrompt(
            messages=[
                ChatMessage.system(system_prompt),
                ChatMessage.user(f'"""{task}"""'),
                *messages,
                final_instruction_msg,
            ],
            prefill_response=response_prefill,
            functions=commands if self.config.use_functions_api else [],
        )
 
    def build_system_prompt(
        self,
        ai_profile: AIProfile,
        ai_directives: AIDirectives,
        commands: list[CompletionModelFunction],
        include_os_info: bool,
    ) -> tuple[str, str]:
        """
        Builds the system prompt.
 
        Returns:
            str: The system prompt body
            str: The desired start for the LLM's response; used to steer the output
        """
        response_fmt_instruction, response_prefill = self.response_format_instruction(
            self.config.use_functions_api
        )
        system_prompt_parts = (
            self._generate_intro_prompt(ai_profile)
            + (self._generate_os_info() if include_os_info else [])
            + [
                self.config.body_template.format(
                    constraints=format_numbered_list(
                        ai_directives.constraints
                        + self._generate_budget_constraint(ai_profile.api_budget)
                    ),
                    resources=format_numbered_list(ai_directives.resources),
                    commands=self._generate_commands_list(commands),
                    best_practices=format_numbered_list(ai_directives.best_practices),
                )
            ]
            + [
                "## Your Task\n"
                "The user will specify a task for you to execute, in triple quotes,"
                " in the next message. Your job is to complete the task while following"
                " your directives as given above, and terminate when your task is done."
            ]
            + ["## RESPONSE FORMAT\n" + response_fmt_instruction]
        )
 
        # Join non-empty parts together into paragraph format
        return (
            "\n\n".join(filter(None, system_prompt_parts)).strip("\n"),
            response_prefill,
        )
 
    def response_format_instruction(self, use_functions_api: bool) -> tuple[str, str]:
        response_schema = self.response_schema.copy(deep=True)
        if (
            use_functions_api
            and response_schema.properties
            and "use_tool" in response_schema.properties
        ):
            del response_schema.properties["use_tool"]
 
        # Unindent for performance
        response_format = re.sub(
            r"\n\s+",
            "\n",
            response_schema.to_typescript_object_interface(_RESPONSE_INTERFACE_NAME),
        )
        response_prefill = f'{{\n    "{list(response_schema.properties.keys())[0]}":'
 
        return (
            (
                f"YOU MUST ALWAYS RESPOND WITH A JSON OBJECT OF THE FOLLOWING TYPE:\n"
                f"{response_format}"
                + ("\n\nYOU MUST ALSO INVOKE A TOOL!" if use_functions_api else "")
            ),
            response_prefill,
        )
 
    def _generate_intro_prompt(self, ai_profile: AIProfile) -> list[str]:
        """Generates the introduction part of the prompt.
 
        Returns:
            list[str]: A list of strings forming the introduction part of the prompt.
        """
        return [
            f"You are {ai_profile.ai_name}, {ai_profile.ai_role.rstrip('.')}.",
            "Your decisions must always be made independently without seeking "
            "user assistance. Play to your strengths as an LLM and pursue "
            "simple strategies with no legal complications.",
        ]
 
    def _generate_os_info(self) -> list[str]:
        """Generates the OS information part of the prompt.
 
        Params:
            config (Config): The configuration object.
 
        Returns:
            str: The OS information part of the prompt.
        """
        os_name = platform.system()
        os_info = (
            platform.platform(terse=True)
            if os_name != "Linux"
            else distro.name(pretty=True)
        )
        return [f"The OS you are running on is: {os_info}"]
 
    def _generate_budget_constraint(self, api_budget: float) -> list[str]:
        """Generates the budget information part of the prompt.
 
        Returns:
            list[str]: The budget information part of the prompt, or an empty list.
        """
        if api_budget > 0.0:
            return [
                f"It takes money to let you run. "
                f"Your API budget is ${api_budget:.3f}"
            ]
        return []
 
    def _generate_commands_list(self, commands: list[CompletionModelFunction]) -> str:
        """Lists the commands available to the agent.
 
        Params:
            agent: The agent for which the commands are being listed.
 
        Returns:
            str: A string containing a numbered list of commands.
        """
        try:
            return format_numbered_list([cmd.fmt_line() for cmd in commands])
        except AttributeError:
            self.logger.warning(f"Formatting commands failed. {commands}")
            raise
 
    def parse_response_content(
        self,
        response: AssistantChatMessage,
    ) -> OneShotAgentActionProposal:
        if not response.content:
            raise InvalidAgentResponseError("Assistant response has no text content")
 
        self.logger.debug(
            "LLM response content:"
            + (
                f"\n{response.content}"
                if "\n" in response.content
                else f" '{response.content}'"
            )
        )
        assistant_reply_dict = extract_dict_from_json(response.content)
        self.logger.debug(
            "Parsing object extracted from LLM response:\n"
            f"{json.dumps(assistant_reply_dict, indent=4)}"
        )
 
        parsed_response = OneShotAgentActionProposal.parse_obj(assistant_reply_dict)
        if self.config.use_functions_api:
            if not response.tool_calls:
                raise InvalidAgentResponseError("Assistant did not use a tool")
            parsed_response.use_tool = response.tool_calls[0].function
        return parsed_response

  

这段代码实现了一个助理AI系统,本质上是ReAct框架,主要包括以下功能:

  1. 定义了助理AI的思考模型AssistantThoughts,包括观察、思考、推理、自我批评、计划和口头表达等属性。
  2. 定义了OneShotAgentActionProposal类,用于存储助理AI提出的行动建议和思考。
  3. 实现了OneShotAgentPromptConfiguration和OneShotAgentPromptStrategy类,用于配置和构建助理AI的提示信息和操作策略。
  4. 使用Pydantic库进行数据验证和模型定义。
  5. 实现了各种辅助方法,用于生成系统提示、解析回复内容等功能。
  6. 包含了与JSON数据交互、日志记录、异常处理等相关模块和函数。

总体而言,这段代码涵盖了助理AI系统中与提示信息、响应解析、操作建议等方面相关的关键功能。

 

posted @   bonelee  阅读(162)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2022-05-23 Nebula入门学习——day2 初次使用实践
2022-05-23 nebula入门学习——day1 nebula基本概念、原理和架构
2021-05-23 靶场推荐——pikachu SQL注入示例
2021-05-23 高精度IP定位——可以使用opengps 效果还不错
2021-05-23 Telegram 社工库泄露用户隐私
2021-05-23 监控github上新增的cve编号项目漏洞,推送钉钉或者server酱——可以直接利用poc进行漏洞测试利用
2021-05-23 robots.txt 信息收集 信息泄露 可以看到后台服务器的一些信息 目录信息
点击右上角即可分享
微信分享提示