深度学习算法原理实现——自写神经网络识别mnist手写数字和训练模型
代码来自:https://weread.qq.com/web/reader/33f32c90813ab71c6g018fffkd3d322001ad3d9446802347 《python深度学习》
from tensorflow.keras.datasets import mnist from tensorflow.keras import optimizers import tensorflow as tf import numpy as np class NaiveDense: def __init__(self, input_size, output_size, activation): self.activation = activation w_shape = (input_size, output_size) w_initial_value = tf.random.uniform(w_shape, minval=0, maxval=1e-1) self.W = tf.Variable(w_initial_value) b_shape = (output_size,) b_initial_value = tf.zeros(b_shape) self.b = tf.Variable(b_initial_value) def __call__(self, inputs): return self.activation(tf.matmul(inputs, self.W) + self.b) @property def weights(self): return [self.W, self.b] class NaiveSequential: def __init__(self, layers): self.layers = layers def __call__(self, inputs): x = inputs for layer in self.layers: x = layer(x) return x @property def weights(self): weights = [] for layer in self.layers: weights += layer.weights return weights class BatchGenerator: def __init__(self, images, labels, batch_size=128): assert len(images) == len(labels) self.index = 0 self.images = images self.labels = labels self.batch_size = batch_size self.num_batches = math.ceil(len(images) / batch_size) def next(self): images = self.images[self.index : self.index + self.batch_size] labels = self.labels[self.index : self.index + self.batch_size] self.index += self.batch_size return images, labels def one_training_step(model, images_batch, labels_batch): with tf.GradientTape() as tape: predictions = model(images_batch) per_sample_losses = tf.keras.losses.sparse_categorical_crossentropy( labels_batch, predictions) average_loss = tf.reduce_mean(per_sample_losses) gradients = tape.gradient(average_loss, model.weights) update_weights(gradients, model.weights) return average_loss def update_weights(gradients, weights): for g, w in zip(gradients, weights): w.assign_sub(g * learning_rate) def update_weights(gradients, weights): optimizer.apply_gradients(zip(gradients, weights)) def fit(model, images, labels, epochs, batch_size=128): for epoch_counter in range(epochs): print(f"Epoch {epoch_counter}") batch_generator = BatchGenerator(images, labels) for batch_counter in range(batch_generator.num_batches): images_batch, labels_batch = batch_generator.next() loss = one_training_step(model, images_batch, labels_batch) if batch_counter % 100 == 0: print(f"loss at batch {batch_counter}: {loss:.2f}") model = NaiveSequential([ NaiveDense(input_size=28 * 28, output_size=512, activation=tf.nn.relu), NaiveDense(input_size=512, output_size=10, activation=tf.nn.softmax) ]) assert len(model.weights) == 4 import math learning_rate = 1e-3 optimizer = optimizers.SGD(learning_rate=1e-3) (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype("float32") / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype("float32") / 255 fit(model, train_images, train_labels, epochs=10, batch_size=128) predictions = model(test_images) predictions = predictions.numpy() predicted_labels = np.argmax(predictions, axis=1) matches = predicted_labels == test_labels print(f"accuracy: {matches.mean():.2f}")
输出:
Epoch 0 loss at batch 0: 3.28 loss at batch 100: 2.21 loss at batch 200: 2.15 loss at batch 300: 2.06 loss at batch 400: 2.15 Epoch 1 loss at batch 0: 1.87 loss at batch 100: 1.86 loss at batch 200: 1.78 loss at batch 300: 1.68 loss at batch 400: 1.76 Epoch 2 loss at batch 0: 1.55 loss at batch 100: 1.56 loss at batch 200: 1.47 loss at batch 300: 1.41 loss at batch 400: 1.46 Epoch 3 loss at batch 0: 1.29 loss at batch 100: 1.32 loss at batch 200: 1.21 loss at batch 300: 1.20 loss at batch 400: 1.24 Epoch 4 loss at batch 0: 1.11 loss at batch 100: 1.15 loss at batch 200: 1.02 loss at batch 300: 1.04 loss at batch 400: 1.08 Epoch 5 loss at batch 0: 0.97 loss at batch 100: 1.01 loss at batch 200: 0.88 loss at batch 300: 0.92 loss at batch 400: 0.96 Epoch 6 loss at batch 0: 0.86 loss at batch 100: 0.90 loss at batch 200: 0.78 loss at batch 300: 0.84 loss at batch 400: 0.88 Epoch 7 loss at batch 0: 0.78 loss at batch 100: 0.82 loss at batch 200: 0.71 loss at batch 300: 0.77 loss at batch 400: 0.81 Epoch 8 loss at batch 0: 0.72 loss at batch 100: 0.75 loss at batch 200: 0.65 loss at batch 300: 0.71 loss at batch 400: 0.76 Epoch 9 loss at batch 0: 0.67 loss at batch 100: 0.70 loss at batch 200: 0.60 loss at batch 300: 0.67 loss at batch 400: 0.72 accuracy: 0.82
这段代码实现了一个简单的神经网络模型,用于手写数字识别。主要使用了 TensorFlow 库进行实现。
以下是代码的主要部分和它们的功能:
1. 定义神经网络层:NaiveDense 类定义了一个全连接层,包含权重 W 和偏置 b,并使用了一个激活函数。
2. 定义神经网络模型:NaiveSequential 类定义了一个神经网络模型,它由多个 NaiveDense 层组成。
3. 定义批量生成器:BatchGenerator 类用于生成训练批次。
4. 定义训练步骤:one_training_step 函数定义了一步训练过程,包括前向传播、计算损失、反向传播和更新权重。
5. 定义训练过程:fit 函数定义了整个训练过程,包括多个训练周期和每个周期中的多个训练步骤。
6. 创建模型和优化器:创建了一个由两个 NaiveDense 层组成的 NaiveSequential 模型,以及一个 SGD 优化器。
7. 加载和预处理数据:加载了 MNIST 手写数字数据集,并进行了预处理。
8. 训练模型:使用 fit 函数训练了模型。
9. 测试模型:使用测试数据对模型进行了测试,并计算了准确率。
这段代码的主要目的是展示如何使用 TensorFlow 实现一个简单的神经网络模型,并用它进行手写数字识别。
【tensorflow作用】
认为TensorFlow看起来很像NumPy。但是NumPy无法做到的是,检索任意可微表达式相对于其输入的梯度。你只需要创建一个GradientTape作用域,对一个或多个输入张量做一些计算,然后就可以检索计算结果相对于输入的梯度
import tensorflow as tf time = tf.Variable(0.) with tf.GradientTape() as outer_tape: with tf.GradientTape() as inner_tape: position = 4.9 * time ** 2 speed = inner_tape.gradient(position, time) acceleration = outer_tape.gradient(speed, time) print(acceleration) print(speed) 输出: tf.Tensor(9.8, shape=(), dtype=float32) tf.Tensor(0.0, shape=(), dtype=float32)
其他补充 :
在标准的梯度下降法中,参数的更新公式为:
而在动量法中,参数的更新公式为:
可以看到,动量项 v 在每次更新时,都会考虑之前的动量项和当前的梯度,这就像是给参数的更新加上了一个“惯性”,使得参数在梯度方向上的移动更加平滑,而不是每次都完全按照当前的梯度方向。
通俗来说,动量法就像是下山时的滑雪,即使在平坦或者稍微上坡的地方,由于惯性的作用,也能继续前进,从而更快地到达山脚。这就是动量法的基本原理和直观理解。
def naive_relu(x): assert len(x.shape) == 2 x = x.copy() for i in range(x.shape[0]): for j in range(x.shape[1]): x[i, j] = max(x[i, j], 0) return x