金融领域预训练模型用于分类任务,大模型应用参考
在bert的基础上加了一个分类层:
代码实现:
1 2 3 4 5 6 7 8 9 | output = bert.model.output output = Lambda( lambda x: x[:, 0 ], name = 'CLS-token' )(output) output = Dense( units = num_classes, activation = 'softmax' , kernel_initializer = bert.initializer )(output) model = keras.models.Model(bert.model. input , output) |
然后就是利用bert的输出训练一个分类任务了!!!
完整代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | #! -*- coding:utf-8 -*- #FinWoBERT:中文金融领域增强预训练模型 ''' 康明. 深度学习预训练语言模型(案例篇) ——中文金融文本情绪分类研究[M]. 北京: 清华大学出版社, 2022. Ming Kang. Pretraining Language Models in Deep Learning: A Case Study of Chinese Sentiment Classification for Financial Text. Beijing: Tsinghua University Press, 2022. ''' import os, json import numpy as np from bert4keras.backend import keras, set_gelu from bert4keras.tokenizers import Tokenizer from bert4keras.models import build_transformer_model from bert4keras.optimizers import Adam,extend_with_piecewise_linear_lr from bert4keras.snippets import sequence_padding, DataGenerator from bert4keras.snippets import open from keras.layers import Lambda, Dense from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix import jieba_fast as jieba jieba.initialize() num_classes = 3 maxlen = 512 batch_size = 32 # bert配置 # path = "/Users/sssdjj/bert_source/" config_path = 'data/chinese_wobert_L-12_H-768_A-12/bert_config.json' checkpoint_path = 'data/chinese_wobert_L-12_H-768_A-12/bert_model.ckpt' dict_path = 'data/chinese_wobert_L-12_H-768_A-12/vocab.txt' labels = { "其他" : 0 , "利多" : 1 , "利空" : 2 } stop_words = [] # 加入停用词 # with open("data/cn_stopwords.txt") as f: # for i in f: # stop_words.append(i.strip()) def load_data(filename): """加载数据 单条格式:(文本, 标签id) """ D = [] with open (filename, encoding = 'utf-8' ) as f: for l in f: if len (l.strip().split( '|||' )) = = 2 : label,text = l.strip().split( '|||' ) # 去除停用词 # for i in stop_words: # text = str(text).replace(i," ") D.append((text, labels[label])) return D path = "data/" # 加载数据集 train_data = load_data(path + 'train.txt' ) valid_data = load_data(path + 'test.txt' ) # 增加自定义词库 word.txt 元词表 word_zhengf.txt 加入正负词 jieba.load_userdict(path + "word_zhengf_buzai_vocab.txt" ) # 建立分词器 tokenizer = Tokenizer( dict_path, do_lower_case = True , pre_tokenize = lambda s: jieba.cut(s, HMM = False ) ) class data_generator(DataGenerator): """数据生成器 """ def __iter__( self , random = False ): batch_token_ids, batch_segment_ids, batch_labels = [], [], [] for is_end, (text, label) in self .sample(random): token_ids, segment_ids = tokenizer.encode(text, maxlen = maxlen) batch_token_ids.append(token_ids) batch_segment_ids.append(segment_ids) batch_labels.append([label]) if len (batch_token_ids) = = self .batch_size or is_end: batch_token_ids = sequence_padding(batch_token_ids) batch_segment_ids = sequence_padding(batch_segment_ids) batch_labels = sequence_padding(batch_labels) yield [batch_token_ids, batch_segment_ids], batch_labels batch_token_ids, batch_segment_ids, batch_labels = [], [], [] ctokens = [] with open (path + "word_zhengf_buzai_vocab.txt" ) as f: for i in f: ctokens.append(tokenizer.encode(i.strip())[ 0 ][ 1 : - 1 ]) bert = build_transformer_model( config_path, checkpoint_path, return_keras_model = False , compound_tokens = ctokens ) output = bert.model.output output = Lambda( lambda x: x[:, 0 ], name = 'CLS-token' )(output) output = Dense( units = num_classes, activation = 'softmax' , kernel_initializer = bert.initializer )(output) model = keras.models.Model(bert.model. input , output) model.summary() # AdamLR = extend_with_piecewise_linear_lr(Adam, name='AdamLR') model. compile ( loss = 'sparse_categorical_crossentropy' , optimizer = Adam(learning_rate = 1e - 6 ), # 用足够小的学习率 metrics = [ 'accuracy' ], ) # 转换数据集 train_generator = data_generator(train_data, batch_size) valid_generator = data_generator(valid_data, batch_size) def norm_index(y_true,y_pred): acc = accuracy_score(y_true, y_pred) macro_prec = precision_score(y_true, y_pred, average = 'macro' ) micro_prec = precision_score(y_true, y_pred, average = 'micro' ) macro_recall = recall_score(y_true, y_pred, average = 'macro' ) micro_recall = recall_score(y_true, y_pred, average = 'micro' ) macro_f1 = f1_score(y_true, y_pred, average = 'macro' ) micro_f1 = f1_score(y_true, y_pred, average = 'micro' ) cm = confusion_matrix(y_true, y_pred) return acc, macro_prec,micro_prec, macro_recall, micro_recall,macro_f1,micro_f1, cm def evaluate(data): total, right = 0. , 0. pred_list,true_list = [], [] for x_true, y_true in data: y_pred = model.predict(x_true).argmax(axis = 1 ) y_true = y_true[:, 0 ] # total += len(y_true) # right += (y_true == y_pred).sum() pred_list.extend(y_pred) true_list.extend(y_true) return norm_index(true_list,pred_list) class Evaluator(keras.callbacks.Callback): def __init__( self ): self .best_val_acc = 0. def on_epoch_end( self , epoch, logs = None ): val_acc, macro_prec,micro_prec, macro_recall, micro_recall,macro_f1,micro_f1, cm = evaluate(valid_generator) if val_acc > self .best_val_acc: self .best_val_acc = val_acc model.save_weights( 'train/best_model_sentiment.weights' ) print ( u 'val_acc: %.15f, best_val_acc: %.15f,loss:%s\n' % (val_acc, self .best_val_acc,logs) ) print ( u 'macro_prec: %.15f, micro_prec: %.15f\n' % (macro_prec, micro_prec) ) print ( u 'macro_recall: %.15f, micro_recall: %.15f\n' % (macro_recall, micro_recall) ) print ( u 'macro_f1: %.15f, micro_f1: %.15f\n' % (macro_f1, micro_f1) ) print (cm) if __name__ = = '__main__' : evaluator = Evaluator() model.fit_generator( train_generator.forfit(), steps_per_epoch = len (train_generator), epochs = 100 , callbacks = [evaluator] ) else : model.load_weights( 'best_model_sentiment.weights' ) |
为了提升金融领域的领域大模型,还可以针对预训练加入金融领域特有的语料库:
关键技术:
灾难性遗忘
几个文章可以深入阅读下:
1 2 3 4 5 6 | Yuqing Zhao, Divya Saxena, Jiannong Cao. Revisiting Parameter Reuse to Overcome Catastrophic Forgetting in Neural Networks. arXiv: 2207.11005v1 [cs.LG], 2022. Matteo Boschini, Lorenzo Bonicelli, Angelo Porrello, et al. Transfer without Forgetting / / Computer Vision – ECCV 2022 : 17th European Conference, Tel Aviv, Israel, October 23 – 27 , 2022 , Proceedings, Part I. Cham: Springer, 2022. Yabin Wang, Zhiwu Huang, Xiaopeng Hong. S - Prompts Learning with Pre - trained Transformers: An Occam's Razor for Domain Incremental Learning. arXiv: 2207.12819v1 [cs.CV], 2022. |
另外,为了增强可解释性,预训练的语料库要和分类任务保持一致。
最后为了增强模型的健壮性,还可以加入GAN:
Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy. Explaining and Harnessing Adversarial Examples. arXiv:1412.6572v3 [stat.ML], 2015.
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, et al. Intriguing Properties of Neural Networks. arXiv:1312.6199v4 [cs.CV], 2014.
TensorFlow. Adversarial example using FGSM. https://tensorflow.google.cn/tutorials/generative/adversarial_fgsm, 2021.
Nathan Inkawhich. Adversarial Example Generation. https://pytorch.org/tutorials/beginner/fgsm_tutorial.html, 2021.
样本生成用的是该文章的方法:
另外,为了防止过拟合,在输出层可以加入L1正则化!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2022-09-24 UAC提权的姿势——看来还是依赖特定OS版本,很少有一招鲜吃遍天的做法
2021-09-24 勒索软件--todo
2019-09-24 python为什么要使用闭包
2019-09-24 字符串解压缩问题——贪心算法
2019-09-24 有意义的单词分割——经典dfs题目