python多进程map用户 scatter绘图 make_blobs聚类数据生成

python multiprocessing

map(func,iterable [,chunksize ] )

map()内置函数的并行等价物(尽管它只支持一个可迭代的参数)。它会阻塞,直到结果准备就绪。此方法将iterable内的每一个对象作为单独的任务提交给进程池。可以通过将chunksize设置为正整数来指定这些块的(近似)大小。

from multiprocessing import Pool
def test(i):
    print(i)
if  __name__ == "__main__":
    lists = [1, 2, 3]
    pool = Pool(processes=2)       #定义最大的进程数
    pool.map(test, lists)          #p必须是一个可迭代变量。
    pool.close()
    pool.join()
-----------------------------------
©著作权归作者所有:来自51CTO博客作者Python热爱者的原创作品,请联系作者获取转载授权,否则将追究法律责任
python学习:multiprocessing多进程-Pool进程池模块
https://blog.51cto.com/u_14246112/5730105

 

Searching Arrays

You can search an array for a certain value, and return the indexes that get a match.

To search an array, use the where() method.

Example

Find the indexes where the value is 4:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 4, 4])

x = np.where(arr == 4)

print(x)

The example above will return a tuple: (array([3, 5, 6],)

Which means that the value 4 is present at index 3, 5, and 6.

Example

Find the indexes where the values are even:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

x = np.where(arr%2 == 0)

print(x)
 
 
python scatter绘图 举个示例

本文记录了python中的数据可视化——散点图scatter,令x作为数据(50个点,每个30维),我们仅可视化前两维。labels为其类别(假设有三类)。

这里的x就用random来了,具体数据具体分析。

label设定为[1:20]->1, [21:35]->2, [36:50]->3,(python中数组连接方法:先强制转为list,用+,再转回array)

用matplotlib的scatter绘制散点图,legend和matlab中稍有不同,详见代码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
x = rand(50,30)
from numpy import *
import matplotlib
import matplotlib.pyplot as plt
  
#basic
f1 = plt.figure(1)
plt.subplot(211)
plt.scatter(x[:,1],x[:,0])
  
# with label
plt.subplot(212)
label = list(ones(20))+list(2*ones(15))+list(3*ones(15))
label = array(label)
plt.scatter(x[:,1],x[:,0],15.0*label,15.0*label)
  
# with legend
f2 = plt.figure(2)
idx_1 = find(label==1)
p1 = plt.scatter(x[idx_1,1], x[idx_1,0], marker = 'x', color = 'm', label='1', s = 30)
idx_2 = find(label==2)
p2 = plt.scatter(x[idx_2,1], x[idx_2,0], marker = '+', color = 'c', label='2', s = 50)
idx_3 = find(label==3)
p3 = plt.scatter(x[idx_3,1], x[idx_3,0], marker = 'o', color = 'r', label='3', s = 15)
plt.legend(loc = 'upper right')

result:

figure(1):


figure(2):

 

sklearn中的make_blobs函数主要是为了生成数据集的,具体如下:

调用make_blobs

make_blobs的用法

data, label = make_blobs(n_features=2, n_samples=100, centers=3, random_state=3, cluster_std=[0.8, 2, 5])

  • n_features表示每一个样本有多少特征值
  • n_samples表示样本的个数
  • centers是聚类中心点的个数,可以理解为label的种类数
  • random_state是随机种子,可以固定生成的数据
  • cluster_std设置每个类别的方差

 

 

 

posted @   bonelee  阅读(287)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2019-11-20 浅谈僵尸网络利器:Fast-flux技术——只是一些特定的apt组织才使用,倒是很少在恶意软件的培植流量中看到
2017-11-20 python中set和frozenset方法和区别
2017-11-20 FireEye APT检测——APT业务占比过重,缺乏其他安全系统的查杀和修复功能
2017-11-20 安全领域应该关注的网站
2016-11-20 ES curl bulk 导入数据
点击右上角即可分享
微信分享提示