nebula 算法提交spark任务时报错 NoSuchMethodError java.lang.String com.google.common.net.HostAndPort.getHostText 解决

写在前面,根因问题是我下载了spark without hadoop版本导致,应该使用spark with hadoop 版本!!!

----------------------------------------------

参考步骤:https://docs.nebula-graph.com.cn/3.1.0/nebula-algorithm/#_2

 

错误:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
2022-05-31 17:40:16,459 WARN  [main] util.Utils (Logging.scala:logWarning(66)) - Your hostname, bonelee-VirtualBox resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3)
2022-05-31 17:40:16,461 WARN  [main] util.Utils (Logging.scala:logWarning(66)) - Set SPARK_LOCAL_IP if you need to bind to another address
Exception in thread "main" java.lang.NoSuchMethodError: com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)V
    at org.apache.hadoop.conf.Configuration.set(Configuration.java:1357)
    at org.apache.hadoop.conf.Configuration.set(Configuration.java:1338)
    at org.apache.spark.deploy.SparkHadoopUtil$.org$apache$spark$deploy$SparkHadoopUtil$$appendS3AndSparkHadoopConfigurations(SparkHadoopUtil.scala:464)
    at org.apache.spark.deploy.SparkHadoopUtil$.newConfiguration(SparkHadoopUtil.scala:436)
    at org.apache.spark.deploy.SparkSubmit$$anonfun$2.apply(SparkSubmit.scala:323)
    at org.apache.spark.deploy.SparkSubmit$$anonfun$2.apply(SparkSubmit.scala:323)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.deploy.SparkSubmit.prepareSubmitEnvironment(SparkSubmit.scala:323)
    at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:784)
    at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:161)
    at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:184)
    at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86)
    at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:930)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:939)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

 提交方式:

1
2
3
4
5
6
7
spark-submit --master "local" \
--conf spark.app.name="g1" \
--conf spark.executor.extraLibraryPath=/home/bonelee/Desktop/nebula-algorithm/guava-14.0.jar \
--conf spark.executor.extraClassPath=/home/bonelee/Desktop/nebula-algorithm/guava-14.0.jar \
--driver-class-path /home/bonelee/Desktop/nebula-algorithm/guava-14.0.jar  \
--driver-library-path /home/bonelee/Desktop/nebula-algorithm/guava-14.0.jar \
--class com.vesoft.nebula.algorithm.Main nebula-algorithm/target/nebula-algorithm-3.0.0.jar -p /home/bonelee/Desktop/nebula-algorithm/application.conf

 

版本说明

Scala 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_333).
Spark: 2.4.8-bin-without-hadoop

hadoop:3.2.3

nebula:3.0.0

nebula-algorithm:3.0.0

 

application配置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
{
 
  # Spark relation config
 
  spark: {
 
    app: {
 
        name: LPA
 
        # spark.app.partitionNum
 
        partitionNum:100
 
    }
 
    master:local
 
  }
 
  data: {
 
    # data source. optional of nebula,csv,json
 
    source: nebula
 
    # data sink, means the algorithm result will be write into this sink. optional of nebula,csv,text
 
    sink: csv
 
    # if your algorithm needs weight
 
    hasWeight: false
 
  }
 
  # Nebula Graph relation config
 
  nebula: {
 
    # algo's data source from Nebula. If data.source is nebula, then this nebula.read config can be valid.
 
    read: {
 
        # Nebula metad server address, multiple addresses are split by English comma
 
        metaAddress: "127.0.0.1:9559"
 
        # Nebula space
 
        space: basketballplayer
 
        # Nebula edge types, multiple labels means that data from multiple edges will union together
 
        labels: ["serve"]
 
        # Nebula edge property name for each edge type, this property will be as weight col for algorithm.
 
        # Make sure the weightCols are corresponding to labels.
 
        weightCols: ["start_year"]
 
    }
 
    # algo result sink into Nebula. If data.sink is nebula, then this nebula.write config can be valid.
 
    write:{
 
        # Nebula graphd server address, multiple addresses are split by English comma
 
        graphAddress: "127.0.0.1:9669"
 
        # Nebula metad server address, multiple addresses are split by English comma
 
        metaAddress: "127.0.0.1:9559"
 
        user:root
 
        pswd:nebula
 
        # Nebula space name
 
        space:nb
 
        # Nebula tag name, the algorithm result will be write into this tag
 
        tag:pagerank
 
        # algorithm result is insert into new tag or update to original tag. type: insert/update
 
        type:insert
 
    }
 
  }
 
  local: {
 
    # algo's data source from Nebula. If data.source is csv or json, then this local.read can be valid.
 
read:{
 
      filePath: "file:///tmp/algo_edge.csv"
 
      srcId:"src"
 
      # dstId column
 
      dstId:"dst"
 
      # weight column
 
      weight: "weight"
 
      # if csv file has header
 
      header: true
 
      # csv file's delimiter
 
      delimiter:","
 
}
 
    # algo result sink into local file. If data.sink is csv or text, then this local.write can be valid.
 
    write:{
 
        resultPath:/tmp/count
 
    }
 
  }
 
  algorithm: {
 
    # the algorithm that you are going to execute,pick one from [pagerank, louvain, connectedcomponent,
 
    # labelpropagation, shortestpaths, degreestatic, kcore, stronglyconnectedcomponent, trianglecount,
 
    # betweenness, graphtriangleCount, clusteringcoefficient, bfs, hanp, closeness, jaccard, node2vec]
 
    executeAlgo: graphtrianglecount
 
    # PageRank parameter
 
    pagerank: {
 
        maxIter: 10
 
        resetProb: 0.15  # default 0.15
 
    }
 
    # Louvain parameter
 
    louvain: {
 
        maxIter: 20
 
        internalIter: 10
 
        tol: 0.5
 
   }
 
   # connected component parameter.
 
    connectedcomponent: {
 
        maxIter: 20
 
   }
 
   # LabelPropagation parameter
 
    labelpropagation: {
 
        maxIter: 20
 
   }
 
   # ShortestPaths parameter
 
    shortestpaths: {
 
        # several vertices to compute the shortest path to all vertices.
 
        landmarks: "1"
 
   }
 
    # Vertex degree statistics parameter
 
    degreestatic: {}
 
   # KCore parameter
 
   kcore:{
 
        maxIter:10
 
        degree:1
 
   }
 
   # Trianglecount parameter
 
   trianglecount:{}
 
   # graphTriangleCount parameter
 
   graphtrianglecount:{}
 
   # Betweenness centrality parameter. maxIter parameter means the max times of iterations.
 
   betweenness:{
 
        maxIter:5
 
   }
 
   # Clustering Coefficient parameter. The type parameter has two choice, local or global
 
   # local type will compute the clustering coefficient for each vertex, and print the average coefficient for graph.
 
   # global type just compute the graph's clustering coefficient.
 
   clusteringcoefficient:{
 
        type: local
 
   }
 
   # ClosenessAlgo parameter
 
   closeness:{}
 
   # BFS parameter
 
   bfs:{
 
       maxIter:5
 
       root:"10"
 
   }
 
   # HanpAlgo parameter
 
   hanp:{
 
       hopAttenuation:0.1
 
       maxIter:10
 
       preference:1.0
 
   }
 
   #Node2vecAlgo parameter
 
   node2vec:{
 
       maxIter: 10,
 
       lr: 0.025,
 
       dataNumPartition: 10,
 
       modelNumPartition: 10,
 
       dim: 10,
 
       window: 3,
 
       walkLength: 5,
 
       numWalks: 3,
 
       p: 1.0,
 
       q: 1.0,
 
       directed: false,
 
       degree: 30,
 
       embSeparate: ",",
 
       modelPath: "hdfs://127.0.0.1:9000/model"
 
   }
 
   # JaccardAlgo parameter
 
   jaccard:{
 
       tol: 1.0
 
   }
 
 }
 
}

 

如果将上述数据源nebula修改为csv则运行不会出错!!!

 

------------------------------------------------------------------------------------------------------------------------------

使用nebula graph 算法提交spark任务时报错:读取数据源使用的nebula!!!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Exception in thread "main" java.lang.NoSuchMethodError: 'java.lang.String com.google.common.net.HostAndPort.getHostText()'
    at com.vesoft.nebula.connector.NebulaOptions$$anonfun$getMetaAddress$1.apply(NebulaOptions.scala:186)
    at com.vesoft.nebula.connector.NebulaOptions$$anonfun$getMetaAddress$1.apply(NebulaOptions.scala:183)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
    at com.vesoft.nebula.connector.NebulaOptions.getMetaAddress(NebulaOptions.scala:183)
    at com.vesoft.nebula.connector.reader.NebulaSourceReader.getSchema(NebulaSourceReader.scala:45)
    at com.vesoft.nebula.connector.reader.NebulaSourceReader.readSchema(NebulaSourceReader.scala:30)
    at org.apache.spark.sql.execution.datasources.v2.DataSourceV2Relation$.create(DataSourceV2Relation.scala:175)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:223)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:186)
    at com.vesoft.nebula.connector.connector.package$NebulaDataFrameReader.loadEdgesToDF(package.scala:172)
    at com.vesoft.nebula.algorithm.reader.NebulaReader$$anonfun$read$1.apply$mcVI$sp(DataReader.scala:52)
    at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160)
    at com.vesoft.nebula.algorithm.reader.NebulaReader.read(DataReader.scala:38)
    at com.vesoft.nebula.algorithm.Main$.createDataSource(Main.scala:118)
    at com.vesoft.nebula.algorithm.Main$.main(Main.scala:84)
    at com.vesoft.nebula.algorithm.Main.main(Main.scala)
    at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77)
    at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.base/java.lang.reflect.Method.invoke(Method.java:568)
    at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
    at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:855)
    at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:161)
    at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:184)
    at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86)
    at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:930)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:939)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

 

提交方式:

1
2
3
4
5
6
7
/home/bonelee/spark-2.4.8-bin-without-hadoop/bin/spark-submit --master "local" \
--class com.vesoft.nebula.algorithm.Main nebula-algorithm/target/nebula-algorithm-3.0.0.jar -p /home/bonelee/Desktop/nebula-algorithm/application.conf
 
#--driver-class-path /home/bonelee/Desktop/nebula-algorithm/guava-14.0.jar  \
#--driver-library-path /home/bonelee/Desktop/nebula-algorithm/guava-14.0.jar \
#--conf spark.executor.extraLibraryPath=/home/bonelee/Desktop/nebula-algorithm/guava-14.0.jar \
#--conf spark.executor.extraClassPath=/home/bonelee/Desktop/nebula-algorithm/guava-14.0.jar \

即便是使用:https://www.cnblogs.com/1394htw/p/15151913.html 文中说的方法,使用guava-14.0.jar依然会报错!

 

真郁闷,折腾了一下午。。。没有搞定。。。

 

 

绕过该问题的解决方法那就是:

修改application.conf文件数据源:

1
2
3
4
5
6
7
8
data: {
    # data source. optional of nebula,csv,json
    source: nebula
    # data sink, means the algorithm result will be write into this sink. optional of nebula,csv,text
    sink: csv
    # if your algorithm needs weight
    hasWeight: false
  }

 将上面的nebula修改为csv,同时配置下:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
local: {
  # algo's data source from Nebula. If data.source is csv or json, then this local.read can be valid.
 read:{
      filePath: "file:///tmp/algo_edge.csv"
      srcId:"src"
      # dstId column
      dstId:"dst"
      # weight column
      weight: "weight"
      # if csv file has header
      header: true
      # csv file's delimiter
      delimiter:","
  }
 
 
 
  # algo result sink into local file. If data.sink is csv or text, then this local.write can be valid.
  write:{
      resultPath:/tmp/count
  }
}

algo_edge.csv文件内容:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
src,dst,weight
1,1,5.0
1,2,1.0
1,3,5.0
1,4,1.0
2,1,5.0
2,2,1.0
2,3,5.0
2,4,1.0
3,1,1.0
3,2,5.0
3,3,1.0
3,4,5.0
4,1,1.0
4,2,5.0
4,3,1.0
4,4,5.0

 这个时候,是可以正常输出结果的!

1
2
3
bonelee@bonelee-VirtualBox:~/Desktop/nebula-algorithm-2.6$ cat /tmp/count/part-00000-7ae75bc1-80e7-4469-9dda-268a8036db09-c000.csv
count
4

 

 ----------------------------------------------------

20220613解决方法,是在windows下spark 2.4.7跑通的,我要跪了。。。

关键步骤:

1、linux下修改配置文件

将etc/下面的nebula-graphd.conf,nebula-storaged.conf,nebula-metad.conf里的127.0.0.1修改成外部访问地址,我的是:8.35.24.181

1
2
3
4
5
6
7
########## networking ##########
# Comma separated Meta Server Addresses
--meta_server_addrs=8.35.24.181:9559
# Local IP used to identify the nebula-graphd process.
# Change it to an address other than loopback if the service is distributed or
# will be accessed remotely.
--local_ip=8.35.24.181

 

然后记得add hosts,看到上线:  

1
2
3
4
5
6
7
8
9
10
(root@nebula) [algo_edge]> show hosts
+---------------+------+-----------+-----------+--------------+----------------------+-----------------------------------+---------+
| Host          | Port | HTTP port | Status    | Leader count | Leader distribution  | Partition distribution            | Version |
+---------------+------+-----------+-----------+--------------+----------------------+-----------------------------------+---------+
| "127.0.0.1"   | 9779 | 19669     | "OFFLINE" | 0            | "No valid partition" | "basketballplayer:10, cadets:100" | "3.1.0" |
| "8.35.24.181" | 9779 | 19669     | "ONLINE"  | 10           | "algo_edge:10"       | "algo_edge:10"                    | "3.1.0" |
+---------------+------+-----------+-----------+--------------+----------------------+-----------------------------------+---------+
Got 2 rows (time spent 3122/3893 us)
 
Mon, 13 Jun 2022 18:41:25 CST

  

2、图数据库里插入数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
drop space algo_edge;
create space algo_edge(partition_num=10,replica_factor=1,vid_type=INT64);
:sleep 20
use algo_edge;
create tag player(id int);
create edge serve(serve_year int);
:sleep 20
 
 
insert vertex player(id) values 1:(1);
insert vertex player(id) values 2:(2);
insert vertex player(id) values 3:(3);
insert vertex player(id) values 4:(4);
 
insert edge serve(serve_year) values 1->1:(5);
insert edge serve(serve_year) values 1->2:(1);
insert edge serve(serve_year) values 1->3:(5);
insert edge serve(serve_year) values 1->4:(1);
insert edge serve(serve_year) values 2->1:(5);
insert edge serve(serve_year) values 2->2:(1);
insert edge serve(serve_year) values 2->3:(5);
insert edge serve(serve_year) values 2->4:(1);
insert edge serve(serve_year) values 3->1:(1);
insert edge serve(serve_year) values 3->2:(5);
insert edge serve(serve_year) values 3->3:(1);
insert edge serve(serve_year) values 3->4:(5);
insert edge serve(serve_year) values 4->1:(1);
insert edge serve(serve_year) values 4->2:(5);
insert edge serve(serve_year) values 4->3:(1);
insert edge serve(serve_year) values 4->4:(5);

  

3、修改app.conf, 尤其是nebula连接那部分:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
{
  
  # Spark relation config
  
  spark: {
  
    app: {
  
        name: LPA
  
        # spark.app.partitionNum
  
        partitionNum:100
  
    }
  
    master:local
  
  }
  
  data: {
  
    # data source. optional of nebula,csv,json
  
    source: nebula
  
    # data sink, means the algorithm result will be write into this sink. optional of nebula,csv,text
  
    sink: csv
  
    # if your algorithm needs weight
  
    hasWeight: false
  
  }
  
  # Nebula Graph relation config
  
  nebula: {
  
    # algo's data source from Nebula. If data.source is nebula, then this nebula.read config can be valid.
  
    read: {
  
        # Nebula metad server address, multiple addresses are split by English comma
  
        metaAddress: "8.35.24.181:9559"
  
        # Nebula space
  
        space: algo_edge
  
        # Nebula edge types, multiple labels means that data from multiple edges will union together
  
        labels: ["serve"]
  
        # Nebula edge property name for each edge type, this property will be as weight col for algorithm.
  
        # Make sure the weightCols are corresponding to labels.
  
        weightCols: ["serve_year"]
  
    }
  
    # algo result sink into Nebula. If data.sink is nebula, then this nebula.write config can be valid.
  
    write:{
  
        # Nebula graphd server address, multiple addresses are split by English comma
  
        graphAddress: "127.0.0.1:9669"
  
        # Nebula metad server address, multiple addresses are split by English comma
  
        metaAddress: "127.0.0.1:9559"
  
        user:root
  
        pswd:nebula
  
        # Nebula space name
  
        space:nb
  
        # Nebula tag name, the algorithm result will be write into this tag
  
        tag:pagerank
  
        # algorithm result is insert into new tag or update to original tag. type: insert/update
  
        type:insert
  
    }
  
  }
  
  local: {
  
    # algo's data source from Nebula. If data.source is csv or json, then this local.read can be valid.
  
read:{
  
      filePath: "file:///D:/tmp/algo_edge.csv"
  
      srcId:"src"
  
      # dstId column
  
      dstId:"dst"
  
      # weight column
  
      weight: "weight"
  
      # if csv file has header
  
      header: true
  
      # csv file's delimiter
  
      delimiter:","
  
}
  
    # algo result sink into local file. If data.sink is csv or text, then this local.write can be valid.
  
    write:{
  
        resultPath: "file:///D:/tmp/result0613002"
  
    }
  
  }
  
  algorithm: {
  
    # the algorithm that you are going to execute,pick one from [pagerank, louvain, connectedcomponent,
  
    # labelpropagation, shortestpaths, degreestatic, kcore, stronglyconnectedcomponent, trianglecount,
  
    # betweenness, graphtriangleCount, clusteringcoefficient, bfs, hanp, closeness, jaccard, node2vec]
  
    executeAlgo: graphtrianglecount
  
    # PageRank parameter
  
    pagerank: {
  
        maxIter: 10
  
        resetProb: 0.15  # default 0.15
  
    }
  
    # Louvain parameter
  
    louvain: {
  
        maxIter: 20
  
        internalIter: 10
  
        tol: 0.5
  
   }
  
   # connected component parameter.
  
    connectedcomponent: {
  
        maxIter: 20
  
   }
  
   # LabelPropagation parameter
  
    labelpropagation: {
  
        maxIter: 20
  
   }
  
   # ShortestPaths parameter
  
    shortestpaths: {
  
        # several vertices to compute the shortest path to all vertices.
  
        landmarks: "1"
  
   }
  
    # Vertex degree statistics parameter
  
    degreestatic: {}
  
   # KCore parameter
  
   kcore:{
  
        maxIter:10
  
        degree:1
  
   }
  
   # Trianglecount parameter
  
   trianglecount:{}
  
   # graphTriangleCount parameter
  
   graphtrianglecount:{}
  
   # Betweenness centrality parameter. maxIter parameter means the max times of iterations.
  
   betweenness:{
  
        maxIter:5
  
   }
  
   # Clustering Coefficient parameter. The type parameter has two choice, local or global
  
   # local type will compute the clustering coefficient for each vertex, and print the average coefficient for graph.
  
   # global type just compute the graph's clustering coefficient.
  
   clusteringcoefficient:{
  
        type: local
  
   }
  
   # ClosenessAlgo parameter
  
   closeness:{}
  
   # BFS parameter
  
   bfs:{
  
       maxIter:5
  
       root:"10"
  
   }
  
   # HanpAlgo parameter
  
   hanp:{
  
       hopAttenuation:0.1
  
       maxIter:10
  
       preference:1.0
  
   }
  
   #Node2vecAlgo parameter
  
   node2vec:{
  
       maxIter: 10,
  
       lr: 0.025,
  
       dataNumPartition: 10,
  
       modelNumPartition: 10,
  
       dim: 10,
  
       window: 3,
  
       walkLength: 5,
  
       numWalks: 3,
  
       p: 1.0,
  
       q: 1.0,
  
       directed: false,
  
       degree: 30,
  
       embSeparate: ",",
  
       modelPath: "hdfs://127.0.0.1:9000/model"
  
   }
  
   # JaccardAlgo parameter
  
   jaccard:{
  
       tol: 1.0
  
   }
  
 }
  
}

  

 

4、然后运行spark 就可以成功连接nebula数据源并运行了!!!

 

1
spark-submit --master "local" --class com.vesoft.nebula.algorithm.Main nebula-algorithm-3.0.0.jar -p c.conf

 

注意,我是安装的带hadoop的版本!

D:\app\spark-2.4.7-bin-hadoop2.7\bin\spark-submit  

 

 

 

 

 

 

 

posted @   bonelee  阅读(3)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2018-05-30 leetcode 482. License Key Formatting
2018-05-30 leetcode 724. Find Pivot Index
2018-05-30 KNN cosine 余弦相似度计算
点击右上角即可分享
微信分享提示