dga model train and test code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | # _*_coding:UTF-8_*_ import operator import tldextract import random import pickle import os import tflearn from math import log from tflearn.data_utils import to_categorical, pad_sequences from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import conv_1d, max_pool_1d from tflearn.layers.estimator import regression from tflearn.layers.normalization import batch_normalization from sklearn.model_selection import train_test_split def get_cnn_model(max_len, volcab_size = None ): if volcab_size is None : volcab_size = 10240000 # Building convolutional network network = tflearn.input_data(shape = [ None , max_len], name = 'input' ) network = tflearn.embedding(network, input_dim = volcab_size, output_dim = 32 ) network = conv_1d(network, 64 , 3 , activation = 'relu' , regularizer = "L2" ) network = max_pool_1d(network, 2 ) network = conv_1d(network, 64 , 3 , activation = 'relu' , regularizer = "L2" ) network = max_pool_1d(network, 2 ) network = batch_normalization(network) network = fully_connected(network, 64 , activation = 'relu' ) network = dropout(network, 0.5 ) network = fully_connected(network, 2 , activation = 'softmax' ) sgd = tflearn.SGD(learning_rate = 0.1 , lr_decay = 0.96 , decay_step = 1000 ) network = regression(network, optimizer = sgd, loss = 'categorical_crossentropy' ) model = tflearn.DNN(network, tensorboard_verbose = 0 ) return model def get_data_from(file_name): ans = [] with open (file_name) as f: for line in f: domain_name = line.strip() ans.append(domain_name) return ans def get_local_data(tag = "labeled" ): white_data = get_data_from(file_name = "dga_360_sorted.txt" ) black_data = get_data_from(file_name = "top-1m.csv" ) return black_data, white_data def get_data(): black_x, white_x = get_local_data() black_y, white_y = [ 1 ] * len (black_x), [ 0 ] * len (white_x) X = black_x + white_x labels = black_y + white_y # Generate a dictionary of valid characters valid_chars = {x:idx + 1 for idx, x in enumerate ( set (''.join(X)))} max_features = len (valid_chars) + 1 print ( "max_features:" , max_features) maxlen = max ([ len (x) for x in X]) print ( "max_len:" , maxlen) maxlen = min (maxlen, 256 ) # Convert characters to int and pad X = [[valid_chars[y] for y in x] for x in X] X = pad_sequences(X, maxlen = maxlen, value = 0. ) # Convert labels to 0-1 Y = to_categorical(labels, nb_classes = 2 ) volcab_file = "volcab.pkl" output = open (volcab_file, 'wb' ) # Pickle dictionary using protocol 0. data = { "valid_chars" : valid_chars, "max_len" : maxlen, "volcab_size" : max_features} pickle.dump(data, output) output.close() return X, Y, maxlen, max_features def train_model(): X, Y, max_len, volcab_size = get_data() print ( "X len:" , len (X), "Y len:" , len (Y)) trainX, testX, trainY, testY = train_test_split(X, Y, test_size = 0.2 , random_state = 42 ) print (trainX[: 1 ]) print (trainY[: 1 ]) print (testX[ - 1 :]) print (testY[ - 1 :]) model = get_cnn_model(max_len, volcab_size) model.fit(trainX, trainY, validation_set = (testX, testY), show_metric = True , batch_size = 1024 ) filename = 'finalized_model.tflearn' model.save(filename) model.load(filename) print ( "Just review 3 sample data test result:" ) result = model.predict(testX[ 0 : 3 ]) print (result) def test_model(): volcab_file = "volcab.pkl" assert os.path.exists(volcab_file) pkl_file = open (volcab_file, 'rb' ) data = pickle.load(pkl_file) valid_chars, max_document_length, max_features = data[ "valid_chars" ], data[ "max_len" ], data[ "volcab_size" ] print ( "max_features:" , max_features) print ( "max_len:" , max_document_length) cnn_model = get_cnn_model(max_document_length, max_features) filename = 'finalized_model.tflearn' cnn_model.load(filename) print ( "predict domains:" ) bls = list () with open ( "dga_360_sorted.txt" ) as f: # with open("todo.txt") as f: lines = f.readlines() print ( "domain_list len:" , len (lines)) cnt = 1000 for i in range ( 0 , len (lines), cnt): lines2 = lines[i:i + cnt] domain_list = [line.strip() for line in lines2] #print("domain_list sample:", domain_list[:5]) # Convert characters to int and pad X = [[valid_chars[y] if y in valid_chars else 0 for y in x] for x in domain_list] X = pad_sequences(X, maxlen = max_document_length, value = 0. ) result = cnn_model.predict(X) for i, domain in enumerate (domain_list): if result[i][ 1 ] > . 5 : #.95: #print(lines2[i], domain + " is GDA") print (lines2[i].strip() + "\t" + domain, result[i][ 1 ]) bls.append(domain) else : #print(lines2[i], domain ) pass #print(bls) print ( len (bls) , "dga found!" ) if __name__ = = "__main__" : print ( "train model..." ) train_model() print ( "test model..." ) test_model() |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2018-11-29 示廓灯——也就是前后位置等开启方法 还有该死的刮水器是长这样的
2016-11-29 The Architecture of Open Source Applications——阅读笔记part 1