尾递归 递归函数中,递归调用是整个函数体中最后的语句,且它的返回值不属于表达式的一部分时,这个递归调用就是尾递归,空间复杂度是O(1)

什么是递归深度

递归深度就是递归函数在内存中,同时存在的最大次数
例如下面这段求阶乘的代码:
Java:

int factorial(int n) {
    if (n == 1) {
        return 1;
    }
    return factorial(n - 1) * n;
}

Python:

def factorial(n):
    if n == 1:
        return 1
    return factorial(n-1) * n

C++:

int factorial(int n) {
    if (n == 1) {
        return 1;
    }
    return factorial(n - 1) * n;
}

n=100时,递归深度就是100。一般来说,我们更关心递归深度的数量级,在该阶乘函数中递归深度是O(n)O(n)O(n),而在二分查找中,递归深度是O(log(n))O(log(n))O(log(n))。在后面的教程中,我们还会学到基于递归的快速排序、归并排序、以及平衡二叉树的遍历,这些的递归深度都是(O(log(n))(O(log(n))(O(log(n))。注意,此处说的是递归深度,而并非时间复杂度。

太深的递归会内存溢出

首先,函数本身也是在内存中占空间的,主要用于存储传递的参数,以及调用代码的返回地址。
函数的调用,会在内存的栈空间中开辟新空间,来存放子函数。递归函数更是会不断占用栈空间,例如该阶乘函数,展开到最后n=1时,内存中会存在factorial(100), factorial(99), factorial(98) ... factorial(1)这些函数,它们从栈底向栈顶方向不断扩展。
当递归过深时,栈空间会被耗尽,这时就无法开辟新的函数,会报出stack overflow这样的错误。
所以,在考虑空间复杂度时,递归函数的深度也是要考虑进去的

Follow up:
尾递归:若递归函数中,递归调用是整个函数体中最后的语句,且它的返回值不属于表达式的一部分时,这个递归调用就是尾递归。(上例factorial函数满足前者,但不满足后者,故不是尾递归函数)
尾递归函数的特点是:在递归展开后该函数不再做任何操作,这意味着该函数可以不等子函数执行完,自己直接销毁,这样就不再占用内存。一个递归深度O(n)O(n)O(n)的尾递归函数,可以做到只占用O(1)O(1)O(1)空间。这极大的优化了栈空间的利用。
但要注意,这种内存优化是由编译器决定是否要采取的,不过大多数现代的编译器会利用这种特点自动生成优化的代码。在实际工作当中,尽量写尾递归函数,是很好的习惯。
而在算法题当中,计算空间复杂度时,建议还是老老实实地算空间复杂度了,尾递归这种优化提一下也是可以,但别太在意。

posted @   bonelee  阅读(809)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2018-11-03 时间序列预测——深度好文,ARIMA是最难用的(数据预处理过程不适合工业应用),线性回归模型简单适用,预测趋势很不错,xgboost的话,不太适合趋势预测,如果数据平稳也可以使用。
2017-11-03 查看suse系统版本
2017-11-03 pyspark.mllib.feature module
2017-11-03 LSTM 时间序列数据的异常检测
2017-11-03 基于机器学习的web异常检测——基于HMM的状态序列建模,将原始数据转化为状态机表示,然后求解概率判断异常与否
2017-11-03 异常检测概览——孤立森林 效果是最好的
2017-11-03 异常检测——无监督、高斯分布模型,需要带标记的样本数据,基本假设:特征符合高斯分布
点击右上角即可分享
微信分享提示