python deque的内在实现 本质上就是双向链表所以用于stack、队列非常方便

How collections.deque works?

 

前言:在 Python 生态中,我们经常使用 collections.deque 来实现栈、队列这些只需要进行头尾操作的数据结构,它的 append/pop 操作都是 O(1) 时间复杂度。list 的 pop(0) 的时间复杂度是 O(n), 在这个场景中,它的效率没有 deque 高。那 deque 内部是怎样实现的呢? 我从 GitHub 上挖出了 CPython collections 模块的第二个 commit 的源码。

dequeobject 对象定义

注释写得优雅了,无法进行更加精简的总结。

/* The block length may be set to any number over 1.  Larger numbers
 * reduce the number of calls to the memory allocator but take more
 * memory.  Ideally, BLOCKLEN should be set with an eye to the
 * length of a cache line.
 */

#define BLOCKLEN 62
#define CENTER ((BLOCKLEN - 1) / 2)

/* A `dequeobject` is composed of a doubly-linked list of `block` nodes.
 * This list is not circular (the leftmost block has leftlink==NULL,
 * and the rightmost block has rightlink==NULL).  A deque d's first
 * element is at d.leftblock[leftindex] and its last element is at
 * d.rightblock[rightindex]; note that, unlike as for Python slice
 * indices, these indices are inclusive on both ends.  By being inclusive
 * on both ends, algorithms for left and right operations become
 * symmetrical which simplifies the design.
 *
 * The list of blocks is never empty, so d.leftblock and d.rightblock
 * are never equal to NULL.
 *
 * The indices, d.leftindex and d.rightindex are always in the range
 *     0 <= index < BLOCKLEN.
 * Their exact relationship is:
 *     (d.leftindex + d.len - 1) % BLOCKLEN == d.rightindex.
 *
 * Empty deques have d.len == 0; d.leftblock==d.rightblock;
 * d.leftindex == CENTER+1; and d.rightindex == CENTER.
 * Checking for d.len == 0 is the intended way to see whether d is empty.
 *
 * Whenever d.leftblock == d.rightblock,
 *     d.leftindex + d.len - 1 == d.rightindex.
 *
 * However, when d.leftblock != d.rightblock, d.leftindex and d.rightindex
 * become indices into distinct blocks and either may be larger than the
 * other.
 */

typedef struct BLOCK {
    struct BLOCK *leftlink;
    struct BLOCK *rightlink;
    PyObject *data[BLOCKLEN];
} block;

typedef struct {
    PyObject_HEAD
    block *leftblock;
    block *rightblock;
    int leftindex;  /* in range(BLOCKLEN) */
    int rightindex; /* in range(BLOCKLEN) */
    int len;
    long state; /* incremented whenever the indices move */
    PyObject *weakreflist; /* List of weak references */
} dequeobject;

下面是我为 Block 结构体画的一个图

                +----------------------------------------+
                |          data: 62 objects              |
 +----------+   |                                        |   +-----------+
 | leftlink |---|  | ... | Obj1 | Obj2 | Obj3 | ... |    |---| rightlink |
 +----------+   |           30     31     32             |   +-----------+
                +----------------------------------------+

创建一个 block

static block *
newblock(block *leftlink, block *rightlink, int len) {
    block *b;
    /* To prevent len from overflowing INT_MAX on 64-bit machines, we
     * refuse to allocate new blocks if the current len is dangerously
     * close.  There is some extra margin to prevent spurious arithmetic
     * overflows at various places.  The following check ensures that
     * the blocks allocated to the deque, in the worst case, can only
     * have INT_MAX-2 entries in total.
     */
    if (len >= INT_MAX - 2*BLOCKLEN) {
        PyErr_SetString(PyExc_OverflowError,
                "cannot add more blocks to the deque");
        return NULL;
    }
    b = PyMem_Malloc(sizeof(block));
    if (b == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    b->leftlink = leftlink;
    b->rightlink = rightlink;
    return b;
}

创建一个 dequeobject

  1. 创建一个 block
  2. 实例化一个 dequeobject Python 对象(这一块的内在逻辑目前我也不太懂)
  3. leftblock 和 rightblock 指针都指向这个 block
  4. leftindex 是 CENTER+1,rightindex 是 CENTER
  5. 初始化其他一些属性, len state 等

这个第一步和第四步都有点意思,第一步创建一个 block,也就是说, deque 对象创建的时候,就预先分配了一块内存。第四步隐约告诉我们, 当元素来的时候,它先会被放在中间,然后逐渐往头和尾散开。

static PyObject *
deque_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
    dequeobject *deque;
    block *b;

    if (type == &deque_type && !_PyArg_NoKeywords("deque()", kwds))
        return NULL;

    /* create dequeobject structure */
    deque = (dequeobject *)type->tp_alloc(type, 0);
    if (deque == NULL)
        return NULL;

    b = newblock(NULL, NULL, 0);
    if (b == NULL) {
        Py_DECREF(deque);
        return NULL;
    }

    assert(BLOCKLEN >= 2);
    deque->leftblock = b;
    deque->rightblock = b;
    deque->leftindex = CENTER + 1;
    deque->rightindex = CENTER;
    deque->len = 0;
    deque->state = 0;
    deque->weakreflist = NULL;

    return (PyObject *)deque;
}

deque.append 实现

步骤:

  1. 如果 rightblock 可以容纳更多的元素,则放在 rightblock 中
  2. 如果不能,就新建一个 block,然后更新若干指针,将元素放在更新后的 rightblock 中
static PyObject *
deque_append(dequeobject *deque, PyObject *item)
{
    deque->state++;
    if (deque->rightindex == BLOCKLEN-1) {
        block *b = newblock(deque->rightblock, NULL, deque->len);
        if (b == NULL)
            return NULL;
        assert(deque->rightblock->rightlink == NULL);
        deque->rightblock->rightlink = b;
        deque->rightblock = b;
        deque->rightindex = -1;
    }
    Py_INCREF(item);
    deque->len++;
    deque->rightindex++;
    deque->rightblock->data[deque->rightindex] = item;
    Py_RETURN_NONE;
}

看了 append 实现后,我们可以自行脑补一下 pop 和 popleft 的实现。

小结

deque 内部将一组内存块组织成双向链表的形式,每个内存块可以看成一个 Python 对象的数组, 这个数组与普通数据不同,它是从数组中部往头尾两边填充数据,而平常所见数组大都是从头往后。 得益于 deque 这样的结构,它的 pop/popleft/append/appendleft 四种操作的时间复杂度均是 O(1), 用它来实现队列、栈数据结构会非常方便和高效。但也正因为这样的设计, 它不能像数组那样通过 index 来访问、移除元素。链表 + 数组、或者链表 + 字典 这样的设计在实践中有很广泛的应用,比如 LRUCache, LFUCache,有兴趣的同鞋可以继续探索。

  • PS1: LRUCache 在面试中不要太常见
  • PS2: 出 LFUCache 题的面试官都是变态
  • PS3: 头图来自 quora ,图文不怎么有关系列
posted @ 2019-08-30 10:51  bonelee  阅读(2262)  评论(0编辑  收藏  举报