LabelEncoder save 离线使用
For me the easiest way was exporting LabelEncoder as .pkl
file for each column. You have to export the encoder for each column after using the fit_transform()
function
For example
from sklearn.preprocessing import LabelEncoder
import pickle
import pandas as pd
df_train = pd.read_csv('traing_data.csv')
le = LabelEncoder()
df_train['Departure'] = le.fit_transform(df_train['Departure'])
#exporting the departure encoder
output = open('Departure_encoder.pkl', 'wb')
pickle.dump(le, output)
output.close()
Then in the testing project, you can load the LabelEncoder object and apply transform()
function directly
from sklearn.preprocessing import LabelEncoder
import pandas as pd
df_test = pd.read_csv('testing_data.csv')
#load the encoder file
import pickle
pkl_file = open('Departure_encoder.pkl', 'rb')
le_departure = pickle.load(pkl_file)
pkl_file.close()
df_test['Departure'] = le_departure.transform(df_test['Departure'])
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2018-05-14 Use trained sklearn model with pyspark