• 博客园logo
  • 会员
  • 周边
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
将者,智、信、仁、勇、严也。
Hi,我是李智华,华为-安全AI算法专家,欢迎来到安全攻防对抗的有趣世界。
博客园    首页    新随笔    联系   管理    订阅  订阅

LabelEncoder save 离线使用

 

For me the easiest way was exporting LabelEncoder as .pkl file for each column. You have to export the encoder for each column after using the fit_transform() function

For example

from sklearn.preprocessing import LabelEncoder
import pickle
import pandas as pd
df_train = pd.read_csv('traing_data.csv')
le = LabelEncoder()    
df_train['Departure'] = le.fit_transform(df_train['Departure'])
#exporting the departure encoder
output = open('Departure_encoder.pkl', 'wb')
pickle.dump(le, output)
output.close()

Then in the testing project, you can load the LabelEncoder object and apply transform() function directly

from sklearn.preprocessing import LabelEncoder
import pandas as pd
df_test = pd.read_csv('testing_data.csv')
#load the encoder file
import pickle 
pkl_file = open('Departure_encoder.pkl', 'rb')
le_departure = pickle.load(pkl_file) 
pkl_file.close()
df_test['Departure'] = le_departure.transform(df_test['Departure'])
posted @ 2019-05-14 12:04  bonelee  阅读(2634)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3