python avro 数据格式使用demo

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
{"name": "UEProcedures",
 "type": "record",
 "fields": [
     {"name": "imsi", "type": "string"},
     {"name": "time_at", "type": "string"},
     {"name": "procedures", "type": {"type": "array", "items": {
          "type": "record",
          "name": "SignalProcedure",
          "fields" : [
          {"name": "timestamp", "type": "string"},
          {"name": "procedure_tag", "type": "string"}
          ]
         }}
     }
 ]
}

 ue_procedure.avsc数据格式说明,python3 下的示例代码:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import avro.schema
from avro.datafile import DataFileReader, DataFileWriter
from avro.io import DatumReader, DatumWriter
 
schema = avro.schema.Parse(open('ue_procedure.avsc', "r").read())
 
writer = DataFileWriter(open("ue_procedures.avro", "wb"), DatumWriter(), schema)
writer.append({"imsi": "UE001", "time_at": "2018-04-09 12:15", "procedures": [{"timestamp": "2019-04-09 12:01", "procedure_tag": "A"}, {"timestamp": "2019-04-09 12:02", "procedure_tag": "B"}]})
writer.append({"imsi": "UE002", "time_at": "2018-04-09 12:15", "procedures": [{"timestamp": "2019-04-09 12:01", "procedure_tag": "A"}, {"timestamp": "2019-04-09 12:02", "procedure_tag": "B"}]})
writer.close()
 
reader = DataFileReader(open("ue_procedures.avro", "rb"), DatumReader())
for ue in reader:
    print(ue)
reader.close()

 输出:

{'imsi': 'UE001', 'time_at': '2018-04-09 12:15', 'procedures': [{'timestamp': '2019-04-09 12:01', 'procedure_tag': 'A'}, {'timestamp': '2019-04-09 12:02', 'procedure_tag': 'B'}]}
{'imsi': 'UE002', 'time_at': '2018-04-09 12:15', 'procedures': [{'timestamp': '2019-04-09 12:01', 'procedure_tag': 'A'}, {'timestamp': '2019-04-09 12:02', 'procedure_tag': 'B'}]}

 

另外使用map的示例:

1
2
3
4
5
6
7
8
9
10
{"name": "UEStat",
 "type": "record",
 "fields": [
     {"name": "imsi", "type": "string"},
     {"name": "time_at", "type": "string"},
     {"name": "procedures_total_cnt", "type": "long"},
     {"name": "is_over15_time_detach_minus_attach", "type": "boolean"},
     {"name": "detail_procedures_cnt", "type": {"type": "map", "values": "long"}}
 ]
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import avro.schema
from avro.datafile import DataFileReader, DataFileWriter
from avro.io import DatumReader, DatumWriter
 
schema = avro.schema.Parse(open('chr_ue_stat.avsc', "r").read())
 
writer = DataFileWriter(open("chr_ue_stat.avro", "wb"), DatumWriter(), schema)
writer.append({"imsi": "UE001", "time_at": "2018-04-09 12:15", "is_over15_time_detach_minus_attach": True, "procedures_total_cnt":789, "detail_procedures_cnt": {"A": 123, "B": 342}})
writer.append({"imsi": "UE002", "time_at": "2018-04-09 12:15", "is_over15_time_detach_minus_attach": False, "procedures_total_cnt": 876, "detail_procedures_cnt": {"C":1123, "D": 313}})
writer.close()
 
reader = DataFileReader(open("ue_procedures.avro", "rb"), DatumReader())
for ue in reader:
    print(ue)
reader.close()

 输出:

{'imsi': 'UE001', 'time_at': '2018-04-09 12:15', 'procedures': [{'timestamp': '2019-04-09 12:01', 'procedure_tag': 'A'}, {'timestamp': '2019-04-09 12:02', 'procedure_tag': 'B'}]}
{'imsi': 'UE002', 'time_at': '2018-04-09 12:15', 'procedures': [{'timestamp': '2019-04-09 12:01', 'procedure_tag': 'A'}, {'timestamp': '2019-04-09 12:02', 'procedure_tag': 'B'}]}

 

  

 

参考:https://avro.apache.org/docs/1.8.2/gettingstartedpython.html 

posted @   bonelee  阅读(4031)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2018-04-09 python split space
点击右上角即可分享
微信分享提示