EvalAI使用——类似kaggle的开源平台,不过没有kernel fork功能,比较蛋疼

官方的代码 https://github.com/Cloud-CV/EvalAI 我一直没法成功import yaml配置举办比赛(create a challenge on EvalAI 使用https://github.com/Cloud-CV/EvalAI-Starters)。

 

直到使用第三方的fork: https://github.com/live-wire/EvalAI

 

下面是介绍的简单使用流程:

A question we’re often asked is: Doesn’t Kaggle already do this? The central differences are:

  • Custom Evaluation Protocols and Phases: We have designed versatile backend framework that can support user-defined evaluation metrics, various evaluation phases, private and public leaderboard.

  • Faster Evaluation: The backend evaluation pipeline is engineered so that submissions can be evaluated parallelly using multiple cores on multiple machines via mapreduce frameworks offering a significant performance boost over similar web AI-challenge platforms.

  • Portability: Since the platform is open-source, users have the freedom to host challenges on their own private servers rather than having to explicitly depend on Cloud Services such as AWS, Azure, etc.

  • Easy Hosting: Hosting a challenge is streamlined. One can create the challenge on EvalAI using the intuitive UI (work-in-progress) or using zip configuration file.

  • Centralized Leaderboard: Challenge Organizers whether host their challenge on EvalAI or forked version of EvalAI, they can send the results to main EvalAI server. This helps to build a centralized platform to keep track of different challenges.

 

Goal

Our ultimate goal is to build a centralized platform to host, participate and collaborate in AI challenges organized around the globe and we hope to help in benchmarking progress in AI.

 

Performance comparison

Some background: Last year, the Visual Question Answering Challenge (VQA) 2016 was hosted on some other platform, and on average evaluation would take ~10 minutes. EvalAI hosted this year's VQA Challenge 2017. This year, the dataset for the VQA Challenge 2017 is twice as large. Despite this, we’ve found that our parallelized backend only takes ~130 seconds to evaluate on the whole test set VQA 2.0 dataset.

 

Installation Instructions

Setting up EvalAI on your local machine is really easy. You can setup EvalAI using two methods:

 

Using Docker

You can also use Docker Compose to run all the components of EvalAI together. The steps are:

  1. Get the source code on to your machine via git.

    git clone https://github.com/Cloud-CV/EvalAI.git evalai && cd evalai

    Use your postgres username and password for fields USER and PASSWORD in settings/dev.py file.

  2. Build and run the Docker containers. This might take a while. You should be able to access EvalAI at localhost:8888.

    docker-compose up --build
    

 

Using Virtual Environment

  1. Install python 2.7.10 or above, git, postgresql version >= 10.1, have ElasticMQ installed (Amazon SQS is used in production) and virtualenv, in your computer, if you don't have it already. If you are having trouble with postgresql on Windows check this link postgresqlhelp.

  2. Get the source code on your machine via git.

    git clone https://github.com/Cloud-CV/EvalAI.git evalai
  3. Create a python virtual environment and install python dependencies.

    cd evalai
    virtualenv venv
    source venv/bin/activate  # run this command everytime before working on project
    pip install -r requirements/dev.txt
  4. Create an empty postgres database.

    sudo -i -u (username)
    createdb evalai
    
  5. Change Postgresql credentials in settings/dev.py and run migrations

    Use your postgres username and password for fields USER and PASSWORD in dev.py file. After changing credentials, run migrations using the following command:

    python manage.py migrate --settings=settings.dev
    
  6. Seed the database with some fake data to work with.

    python manage.py seed --settings=settings.dev
    

    This command also creates a superuser(admin), a host user and a participant user with following credentials.

    SUPERUSER- username: admin password: password
    HOST USER- username: host password: password
    PARTICIPANT USER- username: participant password: password

  7. That's it. Now you can run development server at http://127.0.0.1:8000 (for serving backend)

    python manage.py runserver --settings=settings.dev
    
  8. Please make sure that node(>=7.x.x), npm(>=5.x.x) and bower(>=1.8.x) are installed globally on your machine.

    Install npm and bower dependencies by running

    npm install
    bower install
    

    If you running npm install behind a proxy server, use

    npm config set proxy http://proxy:port
    
  9. Now to connect to dev server at http://127.0.0.1:8888 (for serving frontend)

    gulp dev:runserver
    
  10. That's it, Open web browser and hit the url http://127.0.0.1:8888.

  11. (Optional) If you want to see the whole game into play, then install the ElasticMQ Queue service and start the worker in a new terminal window using the following command that consumes the submissions done for every challenge:

    python scripts/workers/submission_worker.py
    

 

注意:为了是新加的账户直接login并加入team,我修改了:
  575  vi accounts/permissions.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from allauth.account.models import EmailAddress
from rest_framework import permissions
 
 
class HasVerifiedEmail(permissions.BasePermission):
    """
    Permission class for if the user has verified the email or not
    """
 
    message = "Please verify your email first!"
 
    def has_permission(self, request, view):
 
        if request.user.is_anonymous:
            return True
        else:
            print("*******************email verify removed!!!!")
            return True
            if EmailAddress.objects.filter(user=request.user, verified=True).exists():
                return True
            else:
                return False

 

使用docker运行:
  578  docker-compose up --build
然后就是漫长的等待。各种安装依赖,安装linux docker的东西。。。

最后访问localhost:8888即可。

 

posted @   bonelee  阅读(787)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-11-30 Batch Normalization的算法本质是在网络每一层的输入前增加一层BN层(也即归一化层),对数据进行归一化处理,然后再进入网络下一层,但是BN并不是简单的对数据进行求归一化,而是引入了两个参数λ和β去进行数据重构
2017-11-30 终端安全工具 gartner 排名
2017-11-30 When Cyber Security Meets Machine Learning 机器学习 安全分析 对于安全领域的总结很有用 看未来演进方向
2017-11-30 DNS隧道之DNS2TCP实现——dns2tcpc必须带server IP才可以,此外ssh可以穿过墙的,设置代理上网
2017-11-30 DNS隧道之DNS2TCP使用心得教程——是可以用来穿透qiang的,ubuntu下直接apt install dns2tcp
2017-11-30 DNS隧道工具汇总——补充,还有IP over DNS的工具NSTX、Iodine、DNSCat
点击右上角即可分享
微信分享提示