【CF】196 Div.2 D. Book of Evil

显然这个图是一课树,看着题目首先联想到LCA(肯定是可以解的)。但是看了一下数据大小,应该会TLE。
然后,忽然想到一个前面做过的题目,大概是在一定条件下树中某结点旋转成为根后查询最长路径。
结果灵感就来了,主要思路是对于每个结点,第一次dfs得到两个变量到P结点的最大值以及次大值。
然后,第二次dfs对于当前结点u,u到它的子树中P类结点的最大距离已知(nd[u].mx),那么除u的其他结点v到P类结点的最大距离加上v到u的距离和的最大值为pmx,可以通过每次深搜计算出来,只要d大于等于两者的最大值就为有效结点。而pmx的求法也很容易,对于u来说pmx可能为其父亲的pmx+1,或者为v的兄弟结点的mx值。
刚好因为我们已知每个结点的最大值以及次大值,所有兄弟结点的最大值可求。直接用INT_MIN,实现比较容易。

  1 /* 337D */
  2 #include <iostream>
  3 #include <string>
  4 #include <map>
  5 #include <queue>
  6 #include <set>
  7 #include <stack>
  8 #include <vector>
  9 #include <deque>
 10 #include <algorithm>
 11 #include <cstdio>
 12 #include <cmath>
 13 #include <ctime>
 14 #include <cstring>
 15 #include <climits>
 16 #include <cctype>
 17 #include <cassert>
 18 #include <functional>
 19 #include <iterator>
 20 #include <iomanip>
 21 using namespace std;
 22 //#pragma comment(linker,"/STACK:102400000,1024000")
 23 
 24 #define sti                set<int>
 25 #define stpii            set<pair<int, int> >
 26 #define mpii            map<int,int>
 27 #define vi                vector<int>
 28 #define pii                pair<int,int>
 29 #define vpii            vector<pair<int,int> >
 30 #define rep(i, a, n)     for (int i=a;i<n;++i)
 31 #define per(i, a, n)     for (int i=n-1;i>=a;--i)
 32 #define clr                clear
 33 #define pb                 push_back
 34 #define mp                 make_pair
 35 #define fir                first
 36 #define sec                second
 37 #define all(x)             (x).begin(),(x).end()
 38 #define SZ(x)             ((int)(x).size())
 39 #define lson            l, mid, rt<<1
 40 #define rson            mid+1, r, rt<<1|1
 41 
 42 typedef struct {
 43     int mx, mx2;
 44 } node_t;
 45 
 46 const int maxn = 1e5+5;
 47 bool mark[maxn];
 48 int n, m, d;
 49 vi E[maxn];
 50 node_t nd[maxn];
 51 int ans = 0;
 52 
 53 int dfs(int u, int fa) {
 54     int i, v;
 55     int tmp;
 56     
 57     nd[u].mx = nd[u].mx2 = INT_MIN;
 58     if (mark[u])
 59         nd[u].mx = 0;
 60     for (i=0; i<SZ(E[u]); ++i) {
 61         v = E[u][i];
 62         if (v != fa) {
 63             tmp = dfs(v, u) + 1;
 64             if (tmp >= nd[u].mx) {
 65                 // find the two fathest distance from p[*] to u
 66                 nd[u].mx2 = nd[u].mx;
 67                 nd[u].mx = tmp;
 68             } else if (tmp > nd[u].mx2) {
 69                 nd[u].mx2 = tmp;
 70             }
 71         }
 72     }
 73     
 74     // -1 means no p in the path
 75     return nd[u].mx;
 76 }
 77 
 78 void dfs2(int u, int fa, int pmx) {
 79     int i, v;
 80     int tmp = max(pmx, nd[u].mx);
 81     
 82     if (tmp <= d) {
 83         ++ans;
 84     }
 85     for (i=0; i<SZ(E[u]); ++i) {
 86         v = E[u][i];
 87         if (v != fa) {
 88             if (nd[v].mx+1 == nd[u].mx)
 89                 tmp = nd[u].mx2;
 90             else
 91                 tmp = nd[u].mx;
 92             tmp = max(tmp, pmx)+1;
 93             dfs2(v, u, tmp);
 94         }
 95     }
 96 }
 97 
 98 int main() {
 99     ios::sync_with_stdio(false);
100     #ifndef ONLINE_JUDGE
101         freopen("data.in", "r", stdin);
102         freopen("data.out", "w", stdout);
103     #endif
104     
105     int u, v;
106     
107     scanf("%d %d %d", &n, &m, &d);
108     while (m--) {
109         scanf("%d", &u);
110         mark[u] = true;
111     }
112     
113     rep(i, 1, n) {
114         scanf("%d %d", &u, &v);
115         E[u].pb(v);
116         E[v].pb(u);
117     }
118     
119     // get the item in node
120     dfs(1, -1);
121     // calculate the number of valid position
122     dfs2(1, -1, INT_MIN);
123     
124     printf("%d\n", ans);
125     
126     #ifndef ONLINE_JUDGE
127         printf("time = %d.\n", (int)clock());
128     #endif
129     
130     return 0;
131 }

 

posted on 2015-07-11 20:47  Bombe  阅读(293)  评论(0编辑  收藏  举报

导航