【MySQL】覆盖索引和回表

  • 先来了解一下两大类索引
    • 聚簇索引(也称聚集索引,主键索引等)
    • 普通索引(也成非聚簇索引,二级索引等)

 

  • 聚簇索引
    • 如果表设置了主键,则主键就是聚簇索引
    • 如果表没有主键,则会默认第一个NOT NULL,且唯一(UNIQUE)的列作为聚簇索引
    • 以上都没有,则会默认创建一个隐藏的row_id作为聚簇索引
InnoDB的聚簇索引的叶子节点存储的是行记录(其实是页结构,一个页包含多行数据),InnoDB必须要有至少一个聚簇索引。
由此可见,使用聚簇索引查询会很快,因为可以直接定位到行记录。

 

  • 普通索引
普通索引也叫二级索引,除聚簇索引外的索引,即非聚簇索引。
InnoDB的普通索引叶子节点存储的是主键(聚簇索引)的值,而MyISAM的普通索引存储的是记录指针。

 

 

请看如下示例:

  • 建表
 CREATE TABLE IF NOT EXISTS `user`(
    -> `id` INT UNSIGNED AUTO_INCREMENT,
    -> `name` VARCHAR(60),
    -> `age` TINYINT(4),
    -> PRIMARY KEY (id),
    -> INDEX idx_age (age)
    -> )ENGINE=innodb charset=utf8mb4;

# id 字段是聚簇索引,age 字段是普通索引(二级索引)

 

  • 随便加几个数据
insert into user(name,age) values('张三',30);
insert into user(name,age) values('李四',20);
insert into user(name,age) values('王五',40);
insert into user(name,age) values('刘八',10);
mysql> select * from user;
+----+------+-----+
| id | name | age |
+----+------+-----+
|  1 | 张三 |  30 |
|  2 | 李四 |  20 |
|  3 | 王五 |  40 |
|  4 | 刘八 |  10 |
+----+------+-----+
4 rows in set (0.06 sec)

 

  • 索引存储结构
id 是主键,所以是聚簇索引,其叶子节点存储的是对应行记录的数据

 

age 是普通索引(二级索引),非聚簇索引,其叶子节点存储的是聚簇索引的的值

 

 

如果查询条件为主键(聚簇索引),则只需扫描一次B+树即可通过聚簇索引定位到要查找的行记录数据。
如:select * from user where id = 1;

 

 

如果查询条件为普通索引(非聚簇索引),需要扫描两次B+树,第一次扫描通过普通索引定位到聚簇索引的值,然后第二次扫描通过聚簇索引的值定位到要查找的行记录数据。
如:select * from user where age = 30;

1》先通过普通索引【age=30】定位到主键值 【id=1】

 

 

 2》在通过聚集索引【id=1】定位到行记录数据

 

 

  • 回表查询
先通过普通索引的值定位到聚簇索引值,在通过聚簇索引的值定位到行记录数据,要通过扫描两次索引B+树,它的性能较扫描一次较低

 

  •  索引覆盖
只需在一颗索引树上就能获取SQL所需的所有列数据,无需回表,速度更快。
例如:select id,age from user where age = 10;

 

  • 如何实现覆盖索引
常见的方法是:将被查询的字段,建立到联合索引里去(若查询有where条件,同时where条件字段也必须为索引字段)。
1》如实现:select id,age from user where age = 10;
explain分析:因为age是普通索引,使用到了age索引,通过一次扫描B+树即可查询到相应的结果,这样就实现了覆盖索引
此时的Extra列的【Using Index】表示进行了聚簇索引
mysql> explain select id,age from user where age = 10;
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key     | key_len | ref   | rows | filtered | Extra       |
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
|  1 | SIMPLE      | user  | NULL       | ref  | idx_age       | idx_age | 2       | const |    1 |   100.00 | Using index |
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
1 row in set (0.07 sec)

 

2》如实现:select id,age,name from user where age = 10;
explain分析:age是普通索引,但name列不在索引树上,所以通过age索引在查询到id和age的值后,需要进行回表再查询name的值。
此时的Extra列的NULL表示进行了回表查询
mysql> explain select id,age,name from user where age = 10;
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key     | key_len | ref   | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | user  | NULL       | ref  | idx_age       | idx_age | 2       | const |    1 |   100.00 | NULL  |
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------+----------+-------+
1 row in set (0.05 sec)


explain 使用方式如下:
EXPLAIN +SQL语句
如:EXPLAIN SELECT * FROM t1

 

  • 为了实现索引覆盖,需要建组合索引idx_age_name(age,name)
mysql> drop index idx_age on user;
mysql> create index idx_age_name on user(`age`,`name`);

我们再次EXPLAIN分析一次:

mysql> explain select id,age,name from user where age = 10;
+----+-------------+-------+------------+------+---------------+--------------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key          | key_len | ref   | rows | filtered | Extra       |
+----+-------------+-------+------------+------+---------------+--------------+---------+-------+------+----------+-------------+
|  1 | SIMPLE      | user  | NULL       | ref  | idx_age_name  | idx_age_name | 2       | const |    1 |   100.00 | Using index |
+----+-------------+-------+------------+------+---------------+--------------+---------+-------+------+----------+-------------+
1 row in set (0.05 sec)

#可见Extra的值为【Using Index】,表示使用的覆盖索引

 

哪些场景适合使用索引覆盖来优化SQL:

  • 全表count查询优化
mysql> explain select count(age) from user;
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | user  | NULL       | index | NULL          | idx_age_name | 245     | NULL |    4 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
1 row in set (0.06 sec)

 

  • 分页查询
mysql> explain select id,age,name from user order by age limit 100,2;
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | user  | NULL       | index | NULL          | idx_age_name | 245     | NULL |    4 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+--------------+---------+------+------+----------+-------------+
1 row in set (0.06 sec)

 

posted @ 2020-05-11 20:23  boluo1230  阅读(1284)  评论(0编辑  收藏  举报