Flink的sink实战之三:cassandra3

欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;

本篇概览

本文是《Flink的sink实战》系列的第三篇,主要内容是体验Flink官方的cassandra connector,整个实战如下图所示,我们先从kafka获取字符串,再执行wordcount操作,然后将结果同时打印和写入cassandra:
在这里插入图片描述

全系列链接

  1. 《Flink的sink实战之一:初探》
  2. 《Flink的sink实战之二:kafka》
  3. 《Flink的sink实战之三:cassandra3》
  4. 《Flink的sink实战之四:自定义》

软件版本

本次实战的软件版本信息如下:

  1. cassandra:3.11.6
  2. kafka:2.4.0(scala:2.12)
  3. jdk:1.8.0_191
  4. flink:1.9.2
  5. maven:3.6.0
  6. flink所在操作系统:CentOS Linux release 7.7.1908
  7. cassandra所在操作系统:CentOS Linux release 7.7.1908
  8. IDEA:2018.3.5 (Ultimate Edition)

关于cassandra

本次用到的cassandra是三台集群部署的集群,搭建方式请参考《ansible快速部署cassandra3集群》

准备cassandra的keyspace和表

先创建keyspace和table:

  1. cqlsh登录cassandra:
cqlsh 192.168.133.168
  1. 创建keyspace(3副本):
CREATE KEYSPACE IF NOT EXISTS example
    WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '3'};
  1. 建表:
CREATE TABLE IF NOT EXISTS example.wordcount (
    word text,
    count bigint,
    PRIMARY KEY(word)
    );

准备kafka的topic

  1. 启动kafka服务;
  2. 创建名为test001的topic,参考命令如下:
./kafka-topics.sh \
--create \
--bootstrap-server 127.0.0.1:9092 \
--replication-factor 1 \
--partitions 1 \
--topic test001
  1. 进入发送消息的会话模式,参考命令如下:
./kafka-console-producer.sh \
--broker-list kafka:9092 \
--topic test001
  1. 在会话模式下,输入任意字符串然后回车,都会将字符串消息发送到broker;

源码下载

如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章的应用在flinksinkdemo文件夹下,如下图红框所示:
在这里插入图片描述

两种写入cassandra的方式

flink官方的connector支持两种方式写入cassandra:

  1. Tuple类型写入:将Tuple对象的字段对齐到指定的SQL的参数中;
  2. POJO类型写入:通过DataStax,将POJO对象对应到注解配置的表和字段中;

接下来分别使用这两种方式;

开发(Tuple写入)

  1. 《Flink的sink实战之二:kafka》中创建了flinksinkdemo工程,在此继续使用;
  2. 在pom.xml中增加casandra的connector依赖:
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-cassandra_2.11</artifactId>
  <version>1.10.0</version>
</dependency>
  1. 另外还要添加flink-streaming-scala依赖,否则编译CassandraSink.addSink这段代码会失败:
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
  <version>${flink.version}</version>
  <scope>provided</scope>
</dependency>
  1. 新增CassandraTuple2Sink.java,这就是Job类,里面从kafka获取字符串消息,然后转成Tuple2类型的数据集写入cassandra,写入的关键点是Tuple内容和指定SQL中的参数的匹配:
package com.bolingcavalry.addsink;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.cassandra.CassandraSink;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;
import java.util.Properties;


public class CassandraTuple2Sink {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //设置并行度
        env.setParallelism(1);

        //连接kafka用到的属性对象
        Properties properties = new Properties();
        //broker地址
        properties.setProperty("bootstrap.servers", "192.168.50.43:9092");
        //zookeeper地址
        properties.setProperty("zookeeper.connect", "192.168.50.43:2181");
        //消费者的groupId
        properties.setProperty("group.id", "flink-connector");
        //实例化Consumer类
        FlinkKafkaConsumer<String> flinkKafkaConsumer = new FlinkKafkaConsumer<>(
                "test001",
                new SimpleStringSchema(),
                properties
        );

        //指定从最新位置开始消费,相当于放弃历史消息
        flinkKafkaConsumer.setStartFromLatest();

        //通过addSource方法得到DataSource
        DataStream<String> dataStream = env.addSource(flinkKafkaConsumer);

        DataStream<Tuple2<String, Long>> result = dataStream
                .flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {
                             @Override
                             public void flatMap(String value, Collector<Tuple2<String, Long>> out) {
                                 String[] words = value.toLowerCase().split("\\s");

                                 for (String word : words) {
                                     //cassandra的表中,每个word都是主键,因此不能为空
                                     if (!word.isEmpty()) {
                                         out.collect(new Tuple2<String, Long>(word, 1L));
                                     }
                                 }
                             }
                         }
                )
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .sum(1);

        result.addSink(new PrintSinkFunction<>())
                .name("print Sink")
                .disableChaining();

        CassandraSink.addSink(result)
                .setQuery("INSERT INTO example.wordcount(word, count) values (?, ?);")
                .setHost("192.168.133.168")
                .build()
                .name("cassandra Sink")
                .disableChaining();

        env.execute("kafka-2.4 source, cassandra-3.11.6 sink, tuple2");
    }
}
  1. 上述代码中,从kafka取得数据,做了word count处理后写入到cassandra,注意addSink方法后的一连串API(包含了数据库连接的参数),这是flink官方推荐的操作,另外为了在Flink web UI看清楚DAG情况,这里调用disableChaining方法取消了operator chain,生产环境中这一行可以去掉;
  2. 编码完成后,执行mvn clean package -U -DskipTests构建,在target目录得到文件flinksinkdemo-1.0-SNAPSHOT.jar
  3. 在Flink的web UI上传flinksinkdemo-1.0-SNAPSHOT.jar,并指定执行类,如下图红框所示:
    在这里插入图片描述
  4. 启动任务后DAG如下:
    在这里插入图片描述
  5. 去前面创建的发送kafka消息的会话模式窗口,发送一个字符串"aaa bbb ccc aaa aaa aaa";
  6. 查看cassandra数据,发现已经新增了三条记录,内容符合预期:
    在这里插入图片描述
  7. 查看TaskManager控制台输出,里面有Tuple2数据集的打印结果,和cassandra的一致:
    在这里插入图片描述
  8. DAG上所有SubTask的记录数也符合预期:
    在这里插入图片描述

开发(POJO写入)

接下来尝试POJO写入,即业务逻辑中的数据结构实例被写入cassandra,无需指定SQL:

  1. 实现POJO写入数据库,需要datastax库的支持,在pom.xml中增加以下依赖:
<dependency>
  <groupId>com.datastax.cassandra</groupId>
  <artifactId>cassandra-driver-core</artifactId>
  <version>3.1.4</version>
  <classifier>shaded</classifier>
  <!-- Because the shaded JAR uses the original POM, you still need
                 to exclude this dependency explicitly: -->
  <exclusions>
    <exclusion>
	<groupId>io.netty</groupId>
	<artifactId>*</artifactId>
	</exclusion>
  </exclusions>
</dependency>
  1. 请注意上面配置的exclusions节点,依赖datastax的时候,按照官方指导对netty相关的间接依赖做排除,官方地址:https://docs.datastax.com/en/developer/java-driver/3.1/manual/shaded_jar/
  2. 创建带有数据库相关注解的实体类WordCount:
package com.bolingcavalry.addsink;

import com.datastax.driver.mapping.annotations.Column;
import com.datastax.driver.mapping.annotations.Table;

@Table(keyspace = "example", name = "wordcount")
public class WordCount {

    @Column(name = "word")
    private String word = "";

    @Column(name = "count")
    private long count = 0;

    public WordCount() {
    }

    public WordCount(String word, long count) {
        this.setWord(word);
        this.setCount(count);
    }

    public String getWord() {
        return word;
    }

    public void setWord(String word) {
        this.word = word;
    }

    public long getCount() {
        return count;
    }

    public void setCount(long count) {
        this.count = count;
    }

    @Override
    public String toString() {
        return getWord() + " : " + getCount();
    }
}
  1. 然后创建任务类CassandraPojoSink:
package com.bolingcavalry.addsink;

import com.datastax.driver.mapping.Mapper;
import com.datastax.shaded.netty.util.Recycler;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.cassandra.CassandraSink;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;

import java.util.Properties;

public class CassandraPojoSink {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //设置并行度
        env.setParallelism(1);

        //连接kafka用到的属性对象
        Properties properties = new Properties();
        //broker地址
        properties.setProperty("bootstrap.servers", "192.168.50.43:9092");
        //zookeeper地址
        properties.setProperty("zookeeper.connect", "192.168.50.43:2181");
        //消费者的groupId
        properties.setProperty("group.id", "flink-connector");
        //实例化Consumer类
        FlinkKafkaConsumer<String> flinkKafkaConsumer = new FlinkKafkaConsumer<>(
                "test001",
                new SimpleStringSchema(),
                properties
        );

        //指定从最新位置开始消费,相当于放弃历史消息
        flinkKafkaConsumer.setStartFromLatest();

        //通过addSource方法得到DataSource
        DataStream<String> dataStream = env.addSource(flinkKafkaConsumer);

        DataStream<WordCount> result = dataStream
                .flatMap(new FlatMapFunction<String, WordCount>() {
                    @Override
                    public void flatMap(String s, Collector<WordCount> collector) throws Exception {
                        String[] words = s.toLowerCase().split("\\s");

                        for (String word : words) {
                            if (!word.isEmpty()) {
                                //cassandra的表中,每个word都是主键,因此不能为空
                                collector.collect(new WordCount(word, 1L));
                            }
                        }
                    }
                })
                .keyBy("word")
                .timeWindow(Time.seconds(5))
                .reduce(new ReduceFunction<WordCount>() {
                    @Override
                    public WordCount reduce(WordCount wordCount, WordCount t1) throws Exception {
                        return new WordCount(wordCount.getWord(), wordCount.getCount() + t1.getCount());
                    }
                });

        result.addSink(new PrintSinkFunction<>())
                .name("print Sink")
                .disableChaining();

        CassandraSink.addSink(result)
                .setHost("192.168.133.168")
                .setMapperOptions(() -> new Mapper.Option[] { Mapper.Option.saveNullFields(true) })
                .build()
                .name("cassandra Sink")
                .disableChaining();

        env.execute("kafka-2.4 source, cassandra-3.11.6 sink, pojo");
    }

}
  1. 从上述代码可见,和前面的Tuple写入类型有很大差别,为了准备好POJO类型的数据集,除了flatMap的匿名类入参要改写,还要写好reduce方法的匿名类入参,并且还要调用setMapperOptions设置映射规则;
  2. 编译构建后,上传jar到flink,并且指定任务类为CassandraPojoSink:
    在这里插入图片描述
  3. 清理之前的数据,在cassandra的cqlsh上执行TRUNCATE example.wordcount;
  4. 像之前那样发送字符串消息到kafka:
    在这里插入图片描述
  5. 查看数据库,发现结果符合预期:

在这里插入图片描述
10. DAG和SubTask情况如下:
在这里插入图片描述

至此,flink的结果数据写入cassandra的实战就完成了,希望能给您一些参考;

欢迎关注公众号:程序员欣宸

微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...
https://github.com/zq2599/blog_demos

posted @ 2020-11-10 15:12  程序员欣宸  Views(555)  Comments(0Edit  收藏  举报