CS Academy Dominant Free Sets

题目链接https://csacademy.com/contest/archive/task/dominant-free-sets/statement/

题目大意:给一个包含N个点的集合,集合中的点各不相同。对于点A,B,如果B.X >= A.X 并且 B.Y >= A.Y,那么认为B优于A。问不存在两个点A,B使得A优于B的集合共多少个。结果对1e9+7取余。10^51xi​​,yi, n​​10^5

解题思路:对于A,B两个点来说,假设A.X < B.X, 那么如果B不优于A,则必有B.Y < A.Y。所以可以将所有点按照X,Y从小到大排序,得到一个O(N^2)的递推关系:num[a[i]] = Σnum[a[j]]  1 <= j < i  && a[j].x < a[i].x && a[j].y > a[i].y

但是仔细考虑一下,每个点的横纵坐标都是1e5之内,而且每次需要找的是已经访问过的点里面x小于当前x,y大于当前y的点的值。那么显然可以记录y坐标的值,利用前缀和即可判断已经出现了多少y大于当前y。而对于x来说,由于统计的是之前大于y的数量,因此只要按照x,y从小到大访问,那么就不会出现将x相同的统计进去。

需要注意的是,在取余的时候相减可能出现负数,而这个时候应当将结果加上mod然后再取余。

代码:

 1 const int maxn = 1e5 + 10;
 2 typedef long long ll;
 3 const ll mod = 1e9 + 7;
 4 int n;
 5 int px[maxn], py[maxn], f[maxn];
 6 ll bit[maxn];
 7 
 8 int lowbit(int x){
 9     return x & (-x);
10 }
11 void add(int x, ll v){
12     while(x <= 1e5){
13         bit[x] = bit[x] % mod + v % mod;
14         bit[x] %= mod;
15         x += lowbit(x);
16     }
17 }
18 ll sum(int x){
19     ll ans = 0;
20     while(x > 0){
21         ans = ans % mod + bit[x] % mod;
22         ans %= mod;
23         x -= lowbit(x);
24     }
25     return ans % mod;
26 }
27 bool cmp(int i, int j){
28     if(px[i] != px[j]) return px[i] < px[j];
29     return py[i] < py[j];
30 }
31 void solve(){
32     for(int i = 0; i <= 1e5; i++) f[i] = i;
33     sort(f + 1, f + n + 1, cmp);
34     memset(bit, 0, sizeof(bit));
35     for(int ii = 1; ii <= n; ii++){
36         int i = f[ii];
37         ll tmp = (sum(1e5) - sum(py[i]) + mod) % mod + 1;
38         tmp %= mod;
39         add(py[i], tmp);
40     }
41     ll ans = sum(1e5) % mod;
42     printf("%I64d\n", ans);
43 }
44 int main(){
45     scanf("%d", &n);
46     for(int i = 1; i <= n; i++)
47         scanf("%d %d", &px[i], &py[i]);
48     solve();
49     return 0;
50 }

题目:

Dominant Free Sets

Time limit: 1000 ms
Memory limit: 256 MB

 

You are given a set SS of NN points. A point Adominates point BB if A_x \geq B_xAx​​Bx​​ and A_y \geq B_yAy​​By​​. Count the number of non-empty subsets of SS that don't contain two points AA and BB such that AA dominates BB.

Standard input

The first line contains a single integer NN.

Each of the next NN lines contains two integers xx and yy, representing a point at coordinates (x, y)(x,y).

Standard output

Print the answer modulo 10^9+7109​​+7 on the first line.

Constraints and notes

  • 1 \leq N \leq 10^51N105​​ 
  • 1 \leq x_i, y_i \leq 10^51xi​​,yi​​105​​ 
  • The NN points are distinct
InputOutputExplanation
4
1 1
2 2
3 3
4 4
4

The only valid sets are the ones with exactly one point.

3
2 1
1 1
1 2
4

The sets are \{(1, 1)\}{(1,1)}, \{(1, 2)\}{(1,2)}, \{(2, 1)\}{(2,1)} and \{(1, 2), (2, 1)\}{(1,2),(2,1)}

posted @ 2017-09-15 11:36  EricJeffrey  阅读(201)  评论(0编辑  收藏  举报