POJ 2533 Longest Ordered Subsequence 简单DP

题目链接http://poj.org/problem?id=2533

题目大意:求最长递增子序列。。。

解题思路:dp[i] = dp[j] + 1  a[i] > a[j] && dp[j] + 1 > dp[i]

注意初始化为1!

代码:

 1 const int inf = 0x3f3f3f3f;
 2 const int maxn = 1e3 + 5;
 3 int n, a[maxn];
 4 int dp[maxn];
 5 
 6 void solve(){
 7     memset(dp, 0, sizeof(dp));
 8     for(int i = 0; i <= n; i++) dp[i] = 1;
 9     int ans = 1;
10     for(int i = 1; i <= n; i++){
11         for(int j = 1; j < i; j++){
12             if(a[j] < a[i] && dp[j] + 1 > dp[i])
13                 dp[i] = dp[j] + 1;
14         }
15         ans = max(ans, dp[i]);
16     }
17     printf("%d\n", ans);
18 }
19 int main(){
20     scanf("%d", &n);
21     for(int i = 1; i <= n; i++){
22         scanf("%d", &a[i]);
23     }
24     solve();
25 }

题目:

Longest Ordered Subsequence
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 54539   Accepted: 24426

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion
posted @ 2017-08-15 17:50  EricJeffrey  阅读(158)  评论(0编辑  收藏  举报