HDU 1024 Max Sum Plus Plus 动态规划
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024
题目大意:n个数分成两两不相交的m段,求使这m段和的最大值。
解题思路:比较坑的点:n2 能过;long long超时,int AC。
dp[i][j]:= 在选择第i个数的情况下前i个数分成j段的最大值
dp[i][j] = max(dp[i - 1][j] + a[i], max(dp[x][j - 1] -> dp[x][j - 1]) + a[i]) x < i
由于n<1000000,并且更新dp[i][j]时只用到了j和j-1的部分,因此采用滚动数组记录选择第i个人时前i个人分成j段的和最大值;同时,max(dp[x][j - 1] -> dp[x][j - 1]) 可以在更新dp[i]的同时记录,这样就将时间复杂度降低到了n2 (所以为什么n2能过???)
另外就是一些细节问题。
代码:
1 const int inf = 0x3f3f3f3f; 2 //dp[i][j]:= 在选择第i个数的情况下前i个数分成j段的最大值 3 //dp[i][j] = max(dp[i - 1][j] + a[i], max(dp[x][j - 1] -> dp[x][j - 1]) + a[i]) x < i 4 const int maxn = 1e6 + 5; 5 int dp[maxn]; 6 int pre[maxn]; 7 int a[maxn], n, m; 8 9 int solve(){ 10 memset(dp, 0, sizeof(dp)); 11 memset(pre, 0, sizeof(pre)); 12 int tmax = -inf; 13 for(int j = 1; j <= m; j++){ 14 tmax = -inf;//记录前i个人本次的最大值 15 for(int i = j; i <= n; i++){ 16 dp[i] = max(dp[i - 1] + a[i], pre[i - 1] + a[i]);//使用的是未更新的值,对应j-1的 17 pre[i - 1] = tmax; //再更新 18 tmax = max(tmax, dp[i]); 19 } 20 } 21 return tmax; //不一定是dp[n],最后一个可能不用选 22 } 23 24 int main(){ 25 while(scanf("%d %d", &m, &n) != EOF){ 26 for(int i = 1; i <= n; i++) scanf("%d", &a[i]); 27 int ans = solve(); 28 printf("%d\n", ans); 29 } 30 }
题目:
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 30900 Accepted Submission(s): 10889
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
Author
JGShining(极光炫影)