蚁群算法
蚁群算法
1、蚂蚁在路径上释放信息素。
2、碰到还没走过的路口,就随机挑选一条路走。同时,释放与路径长度有关的信息素。
3、信息素浓度与路径长度成反比。后来的蚂蚁再次碰到该路口时,就选择信息素浓度较高路径。
4、最优路径上的信息素浓度越来越大。
5、最终蚁群找到最优寻食路径。
蚁群走过较短的那一侧的蚂蚁数数量会多于较长那一侧的,所以留下的信息素就会多,渐渐的蚂蚁就只走较短的那一侧了。
蚁群算法存在缺陷:
蚁群算法在解决小规模TSP问题是勉强能用,稍加时间就能发现最优解,但是若问题规模很大,蚁群算法的性能会极低,甚至卡死。所以可以进行改进,例如精英蚂蚁系统。
精英蚂蚁系统是对基础蚁群算法的一次改进,它在原AS信息素更新原则的基础上增加了一个对至今最优路径的强化手段。在每轮信息素更新完毕后,搜索到至今最优路径的那只蚂蚁将会为这条路径添加额外的信息素。精英蚂蚁系统引入 这种额外的信息素强化手段有助于更好的引导蚂蚁搜索的偏向,使算法更快收敛
针对不同影响因素进行测试
m = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
蚂蚁数量50,信息素重要程度因子1,启发函数重要程度因子5, 信息素挥发因子0.1在迭代次数在40次左右收束
m = 50; % 蚂蚁数量
alpha = 0.5; % 信息素重要程度因子
beta = 10; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
蚂蚁数量50,信息素重要程度因子0.5,启发函数重要程度因子10, 信息素挥发因子0.1在迭代次数在15次左右收束 ,大幅减少迭代次数(降低了信息素,增加了启发函数重要程度因子)
m = 50; % 蚂蚁数量
alpha = 0.1; % 信息素重要程度因子
beta = 10; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
蚂蚁数量50,信息素重要程度因子0.1,启发函数重要程度因子10, 信息素挥发因子0.1在迭代次数在60次左右收束 ,迭代次数不减反增,可见信息素重要程度因子不能过小
m = 50; % 蚂蚁数量
alpha = 0.1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
蚂蚁数量50,信息素重要程度因子0.1,启发函数重要程度因子5, 信息素挥发因子0.1在迭代次数在55次左右收束,启发函数重要程度因子在超过一定数值后并不能有效降低,所以启发函数重要程度因子不宜超过5
m = 100; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
蚂蚁数量100,信息素重要程度因子1,启发函数重要程度因子5, 信息素挥发因子0.1在迭代次数在45次左右收束,增加蚁群数量后能一定程度上减少迭代次数,但是没有明显作用,且增加了运行时间成本,不建议过大。
m = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.2; % 信息素挥发因子
蚂蚁数量50,信息素重要程度因子1,启发函数重要程度因子5, 信息素挥发因子0.2在迭代次数在60次左右收束,信息素挥发因子在增大也没有更加明显的优化了,推荐0.1-0.2即可。
蚁群算法代码
%% 旅行商问题(TSP)优化 %% 清空环境变量 clear all clc %% 导入数据 load citys_data.mat %% 计算城市间相互距离 fprintf('Computing Distance Matrix... \n'); n = size(citys,1); D = zeros(n,n); for i = 1:n for j = 1:n if i ~= j D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2)); else D(i,j) = 1e-4; end end end %% 初始化参数 fprintf('Initializing Parameters... \n'); m = 50; % 蚂蚁数量 alpha = 1; % 信息素重要程度因子 beta = 5; % 启发函数重要程度因子 rho = 0.2; % 信息素挥发因子 Q = 1; % 常系数 Eta = 1./D; % 启发函数 Tau = ones(n,n); % 信息素矩阵 Table = zeros(m,n); % 路径记录表 iter = 1; % 迭代次数初值 iter_max = 150; % 最大迭代次数 Route_best = zeros(iter_max,n); % 各代最佳路径 Length_best = zeros(iter_max,1); % 各代最佳路径的长度 Length_ave = zeros(iter_max,1); % 各代路径的平均长度 %% 迭代寻找最佳路径 figure; while iter <= iter_max fprintf('迭代第%d次\n',iter); % 随机产生各个蚂蚁的起点城市 start = zeros(m,1); for i = 1:m temp = randperm(n); start(i) = temp(1); end Table(:,1) = start; % 构建解空间 citys_index = 1:n; % 逐个蚂蚁路径选择 for i = 1:m % 逐个城市路径选择 for j = 2:n tabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表) allow_index = ~ismember(citys_index,tabu); allow = citys_index(allow_index); % 待访问的城市集合 P = allow; % 计算城市间转移概率 for k = 1:length(allow) P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta; end P = P/sum(P); % 轮盘赌法选择下一个访问城市 Pc = cumsum(P); target_index = find(Pc >= rand); target = allow(target_index(1)); Table(i,j) = target; end end % 计算各个蚂蚁的路径距离 Length = zeros(m,1); for i = 1:m Route = Table(i,:); for j = 1:(n - 1) Length(i) = Length(i) + D(Route(j),Route(j + 1)); end Length(i) = Length(i) + D(Route(n),Route(1)); end % 计算最短路径距离及平均距离 if iter == 1 [min_Length,min_index] = min(Length); Length_best(iter) = min_Length; Length_ave(iter) = mean(Length); Route_best(iter,:) = Table(min_index,:); else [min_Length,min_index] = min(Length); Length_best(iter) = min(Length_best(iter - 1),min_Length); Length_ave(iter) = mean(Length); if Length_best(iter) == min_Length Route_best(iter,:) = Table(min_index,:); else Route_best(iter,:) = Route_best((iter-1),:); end end % 更新信息素 Delta_Tau = zeros(n,n); % 逐个蚂蚁计算 for i = 1:m % 逐个城市计算 for j = 1:(n - 1) Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i); end Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i); end Tau = (1-rho) * Tau + Delta_Tau; % 迭代次数加1,清空路径记录表 % figure; %最佳路径的迭代变化过程 [Shortest_Length,index] = min(Length_best(1:iter)); Shortest_Route = Route_best(index,:); plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],... [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-'); pause(0.3); iter = iter + 1; Table = zeros(m,n); % end end %% 结果显示 [Shortest_Length,index] = min(Length_best); Shortest_Route = Route_best(index,:); disp(['最短距离:' num2str(Shortest_Length)]); disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]); %% 绘图 figure(1) plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],... [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-'); grid on for i = 1:size(citys,1) text(citys(i,1),citys(i,2),[' ' num2str(i)]); end text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点'); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点'); xlabel('城市位置横坐标') ylabel('城市位置纵坐标') title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')']) figure(2) plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:') legend('最短距离','平均距离') xlabel('迭代次数') ylabel('距离') title('各代最短距离与平均距离对比')
总结
蚁群算法(AS)的缺点:
1、收敛速度慢(运行一次要等好久)
2、易于陷入局部最优
m -> 蚂蚁数量:
m数目越多,得到的最优解就越精确,但是会有蚂蚁重复路过同一城市,大量的重复增加了运行时间(100差不多了,运行好久)
alpha -> 信息素重要程度因子:
alpha值过大,蚂蚁选择之前走过的路径可能性就越大,蚁群搜索路径的随机性减弱。alpha值过小,蚁群搜索范围就会减少,易陷入局部最优解。(感觉1或者2就挺好)
beta -> 启发函数重要程度因子:
beta值增大,蚁群更容易选择局部较短路径,能加快算法的运行速度,但是可能陷入局部最优解(4或5就挺大的了)
rho -> 信息素挥发因子:
rho值初始设置为0.1,当rho很小的时候,每条路径的残留信息很多,会被反复搜索,增加运行时间。rho设置的很大的时候,会放弃搜索很多有效路径,可能会忽略最优值。