在数据结构书中,讲解树内容的时候,都会介绍哈夫曼树(Huffman)和哈夫曼编码(哈夫曼树的一种应用)。关于哈夫曼树的定义,在这里就不讨论了,接下来贴出LZ实现哈夫曼树的一种方案。

构建哈夫曼树:

  • 1.首先将所有的节点构成独立的二叉树,这些二叉树构成的一个森林,将这些二叉树构建成一个最小堆;
  • 2.选择最小堆中两个最小树,构建成一颗新的树,将新树插入到最小堆中,删除被选出的两颗最小树;
  • 3.如果最小堆节点数大于1,重复2。
  • 4.最小堆中最后一个节点,这棵树就是哈夫曼树。

本文中二叉树的实现类似二叉排序树,最小堆的实现如数据结构—堆。构建哈夫曼树的实现如下:

 1 #define  MaxSize 100
 2 template<typename Type> 
 3 void Huffman(Type *elements, int n, BinaryTree<Type> &tree){
 4     BinaryTree<Type> first, second;
 5     BinaryTree<Type> node[MaxSize];
 6     for (int i=0; i<n; i++){
 7         node[i].m_proot = new BinTreeNode<Type>(elements[i]);
 8     }
 9     MinHeap<BinaryTree<Type> > heap(node, n);
10 
11     for (int i=0; i<n-1; i++){
12         frist=heap.DeleteMin();
13         second=heap.DeleteMin();
16         if (first.m_proot->GetData() == second.m_proot->GetData()){
17             tree = *(new BinaryTree<Type>(second, first));
18         }
19         else {
20             tree = *(new BinaryTree<Type>(first, second));
21         }
22 
23         heap.Insert(tree);
24     }
25 }

 

posted on 2014-10-01 20:06  人生如梦多半是在演戏  阅读(331)  评论(0编辑  收藏  举报